Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmoprabss GIF version

Theorem dmoprabss 5586
 Description: The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
dmoprabss dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem dmoprabss
StepHypRef Expression
1 dmoprab 5585 . 2 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
2 19.42v 1786 . . . 4 (∃𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑦𝐵) ∧ ∃𝑧𝜑))
32opabbii 3824 . . 3 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ ∃𝑧𝜑)}
4 opabssxp 4414 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ ∃𝑧𝜑)} ⊆ (𝐴 × 𝐵)
53, 4eqsstri 2975 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
61, 5eqsstri 2975 1 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
 Colors of variables: wff set class Syntax hints:   ∧ wa 97  ∃wex 1381   ∈ wcel 1393   ⊆ wss 2917  {copab 3817   × cxp 4343  dom cdm 4345  {coprab 5513 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-dm 4355  df-oprab 5516 This theorem is referenced by:  elmpt2cl  5698  oprabexd  5754  oprabex  5755
 Copyright terms: Public domain W3C validator