![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elmpt2cl | GIF version |
Description: If a two-parameter class is not empty, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
elmpt2cl.f | ⊢ 𝐹 = (x ∈ A, y ∈ B ↦ 𝐶) |
Ref | Expression |
---|---|
elmpt2cl | ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ A ∧ 𝑇 ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmpt2cl.f | . . . . . 6 ⊢ 𝐹 = (x ∈ A, y ∈ B ↦ 𝐶) | |
2 | df-mpt2 5460 | . . . . . 6 ⊢ (x ∈ A, y ∈ B ↦ 𝐶) = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = 𝐶)} | |
3 | 1, 2 | eqtri 2057 | . . . . 5 ⊢ 𝐹 = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = 𝐶)} |
4 | 3 | dmeqi 4479 | . . . 4 ⊢ dom 𝐹 = dom {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = 𝐶)} |
5 | dmoprabss 5528 | . . . 4 ⊢ dom {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = 𝐶)} ⊆ (A × B) | |
6 | 4, 5 | eqsstri 2969 | . . 3 ⊢ dom 𝐹 ⊆ (A × B) |
7 | 1 | mpt2fun 5545 | . . . . . 6 ⊢ Fun 𝐹 |
8 | funrel 4862 | . . . . . 6 ⊢ (Fun 𝐹 → Rel 𝐹) | |
9 | 7, 8 | ax-mp 7 | . . . . 5 ⊢ Rel 𝐹 |
10 | relelfvdm 5148 | . . . . 5 ⊢ ((Rel 𝐹 ∧ 𝑋 ∈ (𝐹‘〈𝑆, 𝑇〉)) → 〈𝑆, 𝑇〉 ∈ dom 𝐹) | |
11 | 9, 10 | mpan 400 | . . . 4 ⊢ (𝑋 ∈ (𝐹‘〈𝑆, 𝑇〉) → 〈𝑆, 𝑇〉 ∈ dom 𝐹) |
12 | df-ov 5458 | . . . 4 ⊢ (𝑆𝐹𝑇) = (𝐹‘〈𝑆, 𝑇〉) | |
13 | 11, 12 | eleq2s 2129 | . . 3 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 〈𝑆, 𝑇〉 ∈ dom 𝐹) |
14 | 6, 13 | sseldi 2937 | . 2 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 〈𝑆, 𝑇〉 ∈ (A × B)) |
15 | opelxp 4317 | . 2 ⊢ (〈𝑆, 𝑇〉 ∈ (A × B) ↔ (𝑆 ∈ A ∧ 𝑇 ∈ B)) | |
16 | 14, 15 | sylib 127 | 1 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ A ∧ 𝑇 ∈ B)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1242 ∈ wcel 1390 〈cop 3370 × cxp 4286 dom cdm 4288 Rel wrel 4293 Fun wfun 4839 ‘cfv 4845 (class class class)co 5455 {coprab 5456 ↦ cmpt2 5457 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 ax-pr 3935 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rex 2306 df-v 2553 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-uni 3572 df-br 3756 df-opab 3810 df-id 4021 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-iota 4810 df-fun 4847 df-fv 4853 df-ov 5458 df-oprab 5459 df-mpt2 5460 |
This theorem is referenced by: elmpt2cl1 5641 elmpt2cl2 5642 elovmpt2 5643 ixxssxr 8539 elixx3g 8540 ixxssixx 8541 eliooxr 8566 elfz2 8651 |
Copyright terms: Public domain | W3C validator |