ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subfzo0 Unicode version

Theorem subfzo0 9097
Description: The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.)
Assertion
Ref Expression
subfzo0  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N ) )  ->  ( -u N  <  ( I  -  J
)  /\  ( I  -  J )  <  N
) )

Proof of Theorem subfzo0
StepHypRef Expression
1 elfzo0 9038 . . 3  |-  ( I  e.  ( 0..^ N )  <->  ( I  e. 
NN0  /\  N  e.  NN  /\  I  <  N
) )
2 elfzo0 9038 . . . . 5  |-  ( J  e.  ( 0..^ N )  <->  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )
3 nn0re 8190 . . . . . . . . . . . 12  |-  ( I  e.  NN0  ->  I  e.  RR )
43adantr 261 . . . . . . . . . . 11  |-  ( ( I  e.  NN0  /\  I  <  N )  ->  I  e.  RR )
5 nnre 7921 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  RR )
6 nn0re 8190 . . . . . . . . . . . . . 14  |-  ( J  e.  NN0  ->  J  e.  RR )
7 resubcl 7275 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  J  e.  RR )  ->  ( N  -  J
)  e.  RR )
85, 6, 7syl2an 273 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  J  e.  NN0 )  -> 
( N  -  J
)  e.  RR )
98ancoms 255 . . . . . . . . . . . 12  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( N  -  J
)  e.  RR )
1093adant3 924 . . . . . . . . . . 11  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  ( N  -  J )  e.  RR )
114, 10anim12i 321 . . . . . . . . . 10  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
I  e.  RR  /\  ( N  -  J
)  e.  RR ) )
12 nn0ge0 8207 . . . . . . . . . . . 12  |-  ( I  e.  NN0  ->  0  <_  I )
1312adantr 261 . . . . . . . . . . 11  |-  ( ( I  e.  NN0  /\  I  <  N )  -> 
0  <_  I )
14 posdif 7450 . . . . . . . . . . . . 13  |-  ( ( J  e.  RR  /\  N  e.  RR )  ->  ( J  <  N  <->  0  <  ( N  -  J ) ) )
156, 5, 14syl2an 273 . . . . . . . . . . . 12  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( J  <  N  <->  0  <  ( N  -  J ) ) )
1615biimp3a 1235 . . . . . . . . . . 11  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  0  <  ( N  -  J
) )
1713, 16anim12i 321 . . . . . . . . . 10  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
0  <_  I  /\  0  <  ( N  -  J ) ) )
18 addgegt0 7444 . . . . . . . . . 10  |-  ( ( ( I  e.  RR  /\  ( N  -  J
)  e.  RR )  /\  ( 0  <_  I  /\  0  <  ( N  -  J )
) )  ->  0  <  ( I  +  ( N  -  J ) ) )
1911, 17, 18syl2anc 391 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  0  <  ( I  +  ( N  -  J ) ) )
20 nn0cn 8191 . . . . . . . . . . . 12  |-  ( I  e.  NN0  ->  I  e.  CC )
2120adantr 261 . . . . . . . . . . 11  |-  ( ( I  e.  NN0  /\  I  <  N )  ->  I  e.  CC )
2221adantr 261 . . . . . . . . . 10  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  I  e.  CC )
23 nn0cn 8191 . . . . . . . . . . . 12  |-  ( J  e.  NN0  ->  J  e.  CC )
24233ad2ant1 925 . . . . . . . . . . 11  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  J  e.  CC )
2524adantl 262 . . . . . . . . . 10  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  J  e.  CC )
26 nncn 7922 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  CC )
27263ad2ant2 926 . . . . . . . . . . 11  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  N  e.  CC )
2827adantl 262 . . . . . . . . . 10  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  N  e.  CC )
2922, 25, 28subadd23d 7344 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
( I  -  J
)  +  N )  =  ( I  +  ( N  -  J
) ) )
3019, 29breqtrrd 3790 . . . . . . . 8  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  0  <  ( ( I  -  J )  +  N
) )
3163ad2ant1 925 . . . . . . . . . 10  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  J  e.  RR )
32 resubcl 7275 . . . . . . . . . 10  |-  ( ( I  e.  RR  /\  J  e.  RR )  ->  ( I  -  J
)  e.  RR )
334, 31, 32syl2an 273 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
I  -  J )  e.  RR )
3453ad2ant2 926 . . . . . . . . . 10  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  N  e.  RR )
3534adantl 262 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  N  e.  RR )
3633, 35possumd 7560 . . . . . . . 8  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
0  <  ( (
I  -  J )  +  N )  <->  -u N  < 
( I  -  J
) ) )
3730, 36mpbid 135 . . . . . . 7  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  -u N  <  ( I  -  J
) )
383adantr 261 . . . . . . . . . . . 12  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  I  e.  RR )
3934adantl 262 . . . . . . . . . . . 12  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  N  e.  RR )
40 readdcl 7007 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  RR  /\  N  e.  RR )  ->  ( J  +  N
)  e.  RR )
416, 5, 40syl2an 273 . . . . . . . . . . . . . 14  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( J  +  N
)  e.  RR )
42413adant3 924 . . . . . . . . . . . . 13  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  ( J  +  N )  e.  RR )
4342adantl 262 . . . . . . . . . . . 12  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( J  +  N )  e.  RR )
4438, 39, 433jca 1084 . . . . . . . . . . 11  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( I  e.  RR  /\  N  e.  RR  /\  ( J  +  N )  e.  RR ) )
45 nn0ge0 8207 . . . . . . . . . . . . . 14  |-  ( J  e.  NN0  ->  0  <_  J )
46453ad2ant1 925 . . . . . . . . . . . . 13  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  0  <_  J )
4746adantl 262 . . . . . . . . . . . 12  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  0  <_  J
)
485, 6anim12i 321 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  J  e.  NN0 )  -> 
( N  e.  RR  /\  J  e.  RR ) )
4948ancoms 255 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( N  e.  RR  /\  J  e.  RR ) )
50493adant3 924 . . . . . . . . . . . . . 14  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  ( N  e.  RR  /\  J  e.  RR ) )
5150adantl 262 . . . . . . . . . . . . 13  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( N  e.  RR  /\  J  e.  RR ) )
52 addge02 7468 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  J  e.  RR )  ->  ( 0  <_  J  <->  N  <_  ( J  +  N ) ) )
5351, 52syl 14 . . . . . . . . . . . 12  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( 0  <_  J 
<->  N  <_  ( J  +  N ) ) )
5447, 53mpbid 135 . . . . . . . . . . 11  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  N  <_  ( J  +  N )
)
5544, 54lelttrdi 7421 . . . . . . . . . 10  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( I  < 
N  ->  I  <  ( J  +  N ) ) )
5655impancom 247 . . . . . . . . 9  |-  ( ( I  e.  NN0  /\  I  <  N )  -> 
( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  ->  I  <  ( J  +  N ) ) )
5756imp 115 . . . . . . . 8  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  I  <  ( J  +  N
) )
584adantr 261 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  I  e.  RR )
5931adantl 262 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  J  e.  RR )
6058, 59, 35ltsubadd2d 7534 . . . . . . . 8  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
( I  -  J
)  <  N  <->  I  <  ( J  +  N ) ) )
6157, 60mpbird 156 . . . . . . 7  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
I  -  J )  <  N )
6237, 61jca 290 . . . . . 6  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  ( -u N  <  ( I  -  J )  /\  ( I  -  J
)  <  N )
)
6362ex 108 . . . . 5  |-  ( ( I  e.  NN0  /\  I  <  N )  -> 
( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  ->  ( -u N  <  ( I  -  J
)  /\  ( I  -  J )  <  N
) ) )
642, 63syl5bi 141 . . . 4  |-  ( ( I  e.  NN0  /\  I  <  N )  -> 
( J  e.  ( 0..^ N )  -> 
( -u N  <  (
I  -  J )  /\  ( I  -  J )  <  N
) ) )
65643adant2 923 . . 3  |-  ( ( I  e.  NN0  /\  N  e.  NN  /\  I  <  N )  ->  ( J  e.  ( 0..^ N )  ->  ( -u N  <  ( I  -  J )  /\  ( I  -  J
)  <  N )
) )
661, 65sylbi 114 . 2  |-  ( I  e.  ( 0..^ N )  ->  ( J  e.  ( 0..^ N )  ->  ( -u N  <  ( I  -  J
)  /\  ( I  -  J )  <  N
) ) )
6766imp 115 1  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N ) )  ->  ( -u N  <  ( I  -  J
)  /\  ( I  -  J )  <  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    e. wcel 1393   class class class wbr 3764  (class class class)co 5512   CCcc 6887   RRcr 6888   0cc0 6889    + caddc 6892    < clt 7060    <_ cle 7061    - cmin 7182   -ucneg 7183   NNcn 7914   NN0cn0 8181  ..^cfzo 8999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-fz 8875  df-fzo 9000
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator