ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpipr Unicode version

Theorem recidpipr 6932
Description: Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.)
Assertion
Ref Expression
recidpipr  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. )  =  1P )
Distinct variable group:    N, l, u

Proof of Theorem recidpipr
StepHypRef Expression
1 nnnq 6520 . . 3  |-  ( N  e.  N.  ->  [ <. N ,  1o >. ]  ~Q  e.  Q. )
2 recclnq 6490 . . . 4  |-  ( [
<. N ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  e.  Q. )
31, 2syl 14 . . 3  |-  ( N  e.  N.  ->  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  e.  Q. )
4 mulnqpr 6675 . . 3  |-  ( ( [ <. N ,  1o >. ]  ~Q  e.  Q.  /\  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  e.  Q. )  ->  <. { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( [
<. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. ) )
51, 3, 4syl2anc 391 . 2  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( [
<. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. ) )
6 recidnq 6491 . . . . . . 7  |-  ( [
<. N ,  1o >. ]  ~Q  e.  Q.  ->  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
)  =  1Q )
71, 6syl 14 . . . . . 6  |-  ( N  e.  N.  ->  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
)  =  1Q )
87breq2d 3776 . . . . 5  |-  ( N  e.  N.  ->  (
l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) )  <->  l  <Q  1Q ) )
98abbidv 2155 . . . 4  |-  ( N  e.  N.  ->  { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
) }  =  {
l  |  l  <Q  1Q } )
107breq1d 3774 . . . . 5  |-  ( N  e.  N.  ->  (
( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) )  <Q  u  <->  1Q 
<Q  u ) )
1110abbidv 2155 . . . 4  |-  ( N  e.  N.  ->  { u  |  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) )  <Q  u }  =  {
u  |  1Q  <Q  u } )
129, 11opeq12d 3557 . . 3  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( [
<. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
)  <Q  u } >.  = 
<. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >. )
13 df-i1p 6565 . . 3  |-  1P  =  <. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >.
1412, 13syl6eqr 2090 . 2  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( [
<. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  1P )
155, 14eqtr3d 2074 1  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. )  =  1P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243    e. wcel 1393   {cab 2026   <.cop 3378   class class class wbr 3764   ` cfv 4902  (class class class)co 5512   1oc1o 5994   [cec 6104   N.cnpi 6370    ~Q ceq 6377   Q.cnq 6378   1Qc1q 6379    .Q cmq 6381   *Qcrq 6382    <Q cltq 6383   1Pc1p 6390    .P. cmp 6392
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-imp 6567
This theorem is referenced by:  recidpirq  6934
  Copyright terms: Public domain W3C validator