ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpirqlemcalc Unicode version

Theorem recidpirqlemcalc 6933
Description: Lemma for recidpirq 6934. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.)
Hypotheses
Ref Expression
recidpirqlemcalc.a  |-  ( ph  ->  A  e.  P. )
recidpirqlemcalc.b  |-  ( ph  ->  B  e.  P. )
recidpirqlemcalc.rec  |-  ( ph  ->  ( A  .P.  B
)  =  1P )
Assertion
Ref Expression
recidpirqlemcalc  |-  ( ph  ->  ( ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) )  +P.  1P )  =  ( ( ( ( A  +P.  1P )  .P.  1P )  +P.  ( 1P  .P.  ( B  +P.  1P ) ) )  +P.  ( 1P 
+P.  1P ) ) )

Proof of Theorem recidpirqlemcalc
StepHypRef Expression
1 recidpirqlemcalc.a . . . . 5  |-  ( ph  ->  A  e.  P. )
2 1pr 6652 . . . . . 6  |-  1P  e.  P.
32a1i 9 . . . . 5  |-  ( ph  ->  1P  e.  P. )
4 addclpr 6635 . . . . 5  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  e.  P. )
51, 3, 4syl2anc 391 . . . 4  |-  ( ph  ->  ( A  +P.  1P )  e.  P. )
6 recidpirqlemcalc.b . . . . 5  |-  ( ph  ->  B  e.  P. )
7 addclpr 6635 . . . . 5  |-  ( ( B  e.  P.  /\  1P  e.  P. )  -> 
( B  +P.  1P )  e.  P. )
86, 3, 7syl2anc 391 . . . 4  |-  ( ph  ->  ( B  +P.  1P )  e.  P. )
9 addclpr 6635 . . . 4  |-  ( ( ( A  +P.  1P )  e.  P.  /\  ( B  +P.  1P )  e. 
P. )  ->  (
( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P. )
105, 8, 9syl2anc 391 . . 3  |-  ( ph  ->  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P. )
11 addassprg 6677 . . 3  |-  ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P.  /\  1P  e.  P.  /\  1P  e.  P. )  ->  ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  +P. 
1P )  =  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  ( 1P  +P.  1P ) ) )
1210, 3, 3, 11syl3anc 1135 . 2  |-  ( ph  ->  ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  +P.  1P )  =  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  ( 1P  +P.  1P ) ) )
13 distrprg 6686 . . . . . . 7  |-  ( ( ( A  +P.  1P )  e.  P.  /\  B  e.  P.  /\  1P  e.  P. )  ->  ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  =  ( ( ( A  +P.  1P )  .P.  B )  +P.  ( ( A  +P.  1P )  .P. 
1P ) ) )
145, 6, 3, 13syl3anc 1135 . . . . . 6  |-  ( ph  ->  ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  =  ( ( ( A  +P.  1P )  .P.  B )  +P.  ( ( A  +P.  1P )  .P.  1P ) ) )
15 1idpr 6690 . . . . . . . 8  |-  ( ( A  +P.  1P )  e.  P.  ->  (
( A  +P.  1P )  .P.  1P )  =  ( A  +P.  1P ) )
165, 15syl 14 . . . . . . 7  |-  ( ph  ->  ( ( A  +P.  1P )  .P.  1P )  =  ( A  +P.  1P ) )
1716oveq2d 5528 . . . . . 6  |-  ( ph  ->  ( ( ( A  +P.  1P )  .P. 
B )  +P.  (
( A  +P.  1P )  .P.  1P ) )  =  ( ( ( A  +P.  1P )  .P.  B )  +P.  ( A  +P.  1P ) ) )
18 mulcomprg 6678 . . . . . . . . 9  |-  ( ( ( A  +P.  1P )  e.  P.  /\  B  e.  P. )  ->  (
( A  +P.  1P )  .P.  B )  =  ( B  .P.  ( A  +P.  1P ) ) )
195, 6, 18syl2anc 391 . . . . . . . 8  |-  ( ph  ->  ( ( A  +P.  1P )  .P.  B )  =  ( B  .P.  ( A  +P.  1P ) ) )
20 distrprg 6686 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  A  e.  P.  /\  1P  e.  P. )  ->  ( B  .P.  ( A  +P.  1P ) )  =  ( ( B  .P.  A
)  +P.  ( B  .P.  1P ) ) )
216, 1, 3, 20syl3anc 1135 . . . . . . . 8  |-  ( ph  ->  ( B  .P.  ( A  +P.  1P ) )  =  ( ( B  .P.  A )  +P.  ( B  .P.  1P ) ) )
22 mulcomprg 6678 . . . . . . . . . . 11  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  .P.  A
)  =  ( A  .P.  B ) )
236, 1, 22syl2anc 391 . . . . . . . . . 10  |-  ( ph  ->  ( B  .P.  A
)  =  ( A  .P.  B ) )
24 recidpirqlemcalc.rec . . . . . . . . . 10  |-  ( ph  ->  ( A  .P.  B
)  =  1P )
2523, 24eqtrd 2072 . . . . . . . . 9  |-  ( ph  ->  ( B  .P.  A
)  =  1P )
26 1idpr 6690 . . . . . . . . . 10  |-  ( B  e.  P.  ->  ( B  .P.  1P )  =  B )
276, 26syl 14 . . . . . . . . 9  |-  ( ph  ->  ( B  .P.  1P )  =  B )
2825, 27oveq12d 5530 . . . . . . . 8  |-  ( ph  ->  ( ( B  .P.  A )  +P.  ( B  .P.  1P ) )  =  ( 1P  +P.  B ) )
2919, 21, 283eqtrd 2076 . . . . . . 7  |-  ( ph  ->  ( ( A  +P.  1P )  .P.  B )  =  ( 1P  +P.  B ) )
3029oveq1d 5527 . . . . . 6  |-  ( ph  ->  ( ( ( A  +P.  1P )  .P. 
B )  +P.  ( A  +P.  1P ) )  =  ( ( 1P 
+P.  B )  +P.  ( A  +P.  1P ) ) )
3114, 17, 303eqtrd 2076 . . . . 5  |-  ( ph  ->  ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  =  ( ( 1P 
+P.  B )  +P.  ( A  +P.  1P ) ) )
32 1idpr 6690 . . . . . 6  |-  ( 1P  e.  P.  ->  ( 1P  .P.  1P )  =  1P )
332, 32mp1i 10 . . . . 5  |-  ( ph  ->  ( 1P  .P.  1P )  =  1P )
3431, 33oveq12d 5530 . . . 4  |-  ( ph  ->  ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) )  =  ( ( ( 1P  +P.  B )  +P.  ( A  +P.  1P ) )  +P.  1P ) )
35 addcomprg 6676 . . . . . . . 8  |-  ( ( 1P  e.  P.  /\  B  e.  P. )  ->  ( 1P  +P.  B
)  =  ( B  +P.  1P ) )
363, 6, 35syl2anc 391 . . . . . . 7  |-  ( ph  ->  ( 1P  +P.  B
)  =  ( B  +P.  1P ) )
3736oveq1d 5527 . . . . . 6  |-  ( ph  ->  ( ( 1P  +P.  B )  +P.  ( A  +P.  1P ) )  =  ( ( B  +P.  1P )  +P.  ( A  +P.  1P ) ) )
38 addcomprg 6676 . . . . . . 7  |-  ( ( ( B  +P.  1P )  e.  P.  /\  ( A  +P.  1P )  e. 
P. )  ->  (
( B  +P.  1P )  +P.  ( A  +P.  1P ) )  =  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) )
398, 5, 38syl2anc 391 . . . . . 6  |-  ( ph  ->  ( ( B  +P.  1P )  +P.  ( A  +P.  1P ) )  =  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) )
4037, 39eqtrd 2072 . . . . 5  |-  ( ph  ->  ( ( 1P  +P.  B )  +P.  ( A  +P.  1P ) )  =  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) )
4140oveq1d 5527 . . . 4  |-  ( ph  ->  ( ( ( 1P 
+P.  B )  +P.  ( A  +P.  1P ) )  +P.  1P )  =  ( (
( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P ) )
4234, 41eqtrd 2072 . . 3  |-  ( ph  ->  ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) )  =  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P ) )
4342oveq1d 5527 . 2  |-  ( ph  ->  ( ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) )  +P.  1P )  =  ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  +P.  1P ) )
44 mulcomprg 6678 . . . . . 6  |-  ( ( 1P  e.  P.  /\  ( B  +P.  1P )  e.  P. )  -> 
( 1P  .P.  ( B  +P.  1P ) )  =  ( ( B  +P.  1P )  .P. 
1P ) )
453, 8, 44syl2anc 391 . . . . 5  |-  ( ph  ->  ( 1P  .P.  ( B  +P.  1P ) )  =  ( ( B  +P.  1P )  .P. 
1P ) )
46 1idpr 6690 . . . . . 6  |-  ( ( B  +P.  1P )  e.  P.  ->  (
( B  +P.  1P )  .P.  1P )  =  ( B  +P.  1P ) )
478, 46syl 14 . . . . 5  |-  ( ph  ->  ( ( B  +P.  1P )  .P.  1P )  =  ( B  +P.  1P ) )
4845, 47eqtrd 2072 . . . 4  |-  ( ph  ->  ( 1P  .P.  ( B  +P.  1P ) )  =  ( B  +P.  1P ) )
4916, 48oveq12d 5530 . . 3  |-  ( ph  ->  ( ( ( A  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( B  +P.  1P ) ) )  =  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) )
5049oveq1d 5527 . 2  |-  ( ph  ->  ( ( ( ( A  +P.  1P )  .P.  1P )  +P.  ( 1P  .P.  ( B  +P.  1P ) ) )  +P.  ( 1P 
+P.  1P ) )  =  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  ( 1P  +P.  1P ) ) )
5112, 43, 503eqtr4d 2082 1  |-  ( ph  ->  ( ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) )  +P.  1P )  =  ( ( ( ( A  +P.  1P )  .P.  1P )  +P.  ( 1P  .P.  ( B  +P.  1P ) ) )  +P.  ( 1P 
+P.  1P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243    e. wcel 1393  (class class class)co 5512   P.cnp 6389   1Pc1p 6390    +P. cpp 6391    .P. cmp 6392
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-imp 6567
This theorem is referenced by:  recidpirq  6934
  Copyright terms: Public domain W3C validator