ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullocprlem Unicode version

Theorem mullocprlem 6668
Description: Calculations for mullocpr 6669. (Contributed by Jim Kingdon, 10-Dec-2019.)
Hypotheses
Ref Expression
mullocprlem.ab  |-  ( ph  ->  ( A  e.  P.  /\  B  e.  P. )
)
mullocprlem.uqedu  |-  ( ph  ->  ( U  .Q  Q
)  <Q  ( E  .Q  ( D  .Q  U
) ) )
mullocprlem.edutdu  |-  ( ph  ->  ( E  .Q  ( D  .Q  U ) ) 
<Q  ( T  .Q  ( D  .Q  U ) ) )
mullocprlem.tdudr  |-  ( ph  ->  ( T  .Q  ( D  .Q  U ) ) 
<Q  ( D  .Q  R
) )
mullocprlem.qr  |-  ( ph  ->  ( Q  e.  Q.  /\  R  e.  Q. )
)
mullocprlem.duq  |-  ( ph  ->  ( D  e.  Q.  /\  U  e.  Q. )
)
mullocprlem.du  |-  ( ph  ->  ( D  e.  ( 1st `  A )  /\  U  e.  ( 2nd `  A ) ) )
mullocprlem.et  |-  ( ph  ->  ( E  e.  Q.  /\  T  e.  Q. )
)
Assertion
Ref Expression
mullocprlem  |-  ( ph  ->  ( Q  e.  ( 1st `  ( A  .P.  B ) )  \/  R  e.  ( 2nd `  ( A  .P.  B ) ) ) )

Proof of Theorem mullocprlem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mullocprlem.uqedu . . . . . . 7  |-  ( ph  ->  ( U  .Q  Q
)  <Q  ( E  .Q  ( D  .Q  U
) ) )
2 mullocprlem.et . . . . . . . . 9  |-  ( ph  ->  ( E  e.  Q.  /\  T  e.  Q. )
)
32simpld 105 . . . . . . . 8  |-  ( ph  ->  E  e.  Q. )
4 mullocprlem.duq . . . . . . . . 9  |-  ( ph  ->  ( D  e.  Q.  /\  U  e.  Q. )
)
54simpld 105 . . . . . . . 8  |-  ( ph  ->  D  e.  Q. )
64simprd 107 . . . . . . . 8  |-  ( ph  ->  U  e.  Q. )
7 mulcomnqg 6481 . . . . . . . . 9  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  .Q  y
)  =  ( y  .Q  x ) )
87adantl 262 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  -> 
( x  .Q  y
)  =  ( y  .Q  x ) )
9 mulassnqg 6482 . . . . . . . . 9  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
( x  .Q  y
)  .Q  z )  =  ( x  .Q  ( y  .Q  z
) ) )
109adantl 262 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q.  /\  z  e.  Q. ) )  ->  (
( x  .Q  y
)  .Q  z )  =  ( x  .Q  ( y  .Q  z
) ) )
113, 5, 6, 8, 10caov13d 5684 . . . . . . 7  |-  ( ph  ->  ( E  .Q  ( D  .Q  U ) )  =  ( U  .Q  ( D  .Q  E
) ) )
121, 11breqtrd 3788 . . . . . 6  |-  ( ph  ->  ( U  .Q  Q
)  <Q  ( U  .Q  ( D  .Q  E
) ) )
13 mullocprlem.qr . . . . . . . 8  |-  ( ph  ->  ( Q  e.  Q.  /\  R  e.  Q. )
)
1413simpld 105 . . . . . . 7  |-  ( ph  ->  Q  e.  Q. )
15 mulclnq 6474 . . . . . . . 8  |-  ( ( D  e.  Q.  /\  E  e.  Q. )  ->  ( D  .Q  E
)  e.  Q. )
165, 3, 15syl2anc 391 . . . . . . 7  |-  ( ph  ->  ( D  .Q  E
)  e.  Q. )
17 ltmnqg 6499 . . . . . . 7  |-  ( ( Q  e.  Q.  /\  ( D  .Q  E
)  e.  Q.  /\  U  e.  Q. )  ->  ( Q  <Q  ( D  .Q  E )  <->  ( U  .Q  Q )  <Q  ( U  .Q  ( D  .Q  E ) ) ) )
1814, 16, 6, 17syl3anc 1135 . . . . . 6  |-  ( ph  ->  ( Q  <Q  ( D  .Q  E )  <->  ( U  .Q  Q )  <Q  ( U  .Q  ( D  .Q  E ) ) ) )
1912, 18mpbird 156 . . . . 5  |-  ( ph  ->  Q  <Q  ( D  .Q  E ) )
2019adantr 261 . . . 4  |-  ( (
ph  /\  E  e.  ( 1st `  B ) )  ->  Q  <Q  ( D  .Q  E ) )
21 mullocprlem.ab . . . . . . . 8  |-  ( ph  ->  ( A  e.  P.  /\  B  e.  P. )
)
2221simpld 105 . . . . . . 7  |-  ( ph  ->  A  e.  P. )
23 mullocprlem.du . . . . . . . 8  |-  ( ph  ->  ( D  e.  ( 1st `  A )  /\  U  e.  ( 2nd `  A ) ) )
2423simpld 105 . . . . . . 7  |-  ( ph  ->  D  e.  ( 1st `  A ) )
2522, 24jca 290 . . . . . 6  |-  ( ph  ->  ( A  e.  P.  /\  D  e.  ( 1st `  A ) ) )
2625adantr 261 . . . . 5  |-  ( (
ph  /\  E  e.  ( 1st `  B ) )  ->  ( A  e.  P.  /\  D  e.  ( 1st `  A
) ) )
2721simprd 107 . . . . . 6  |-  ( ph  ->  B  e.  P. )
2827anim1i 323 . . . . 5  |-  ( (
ph  /\  E  e.  ( 1st `  B ) )  ->  ( B  e.  P.  /\  E  e.  ( 1st `  B
) ) )
2914adantr 261 . . . . 5  |-  ( (
ph  /\  E  e.  ( 1st `  B ) )  ->  Q  e.  Q. )
30 mulnqprl 6666 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  D  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  E  e.  ( 1st `  B
) ) )  /\  Q  e.  Q. )  ->  ( Q  <Q  ( D  .Q  E )  ->  Q  e.  ( 1st `  ( A  .P.  B
) ) ) )
3126, 28, 29, 30syl21anc 1134 . . . 4  |-  ( (
ph  /\  E  e.  ( 1st `  B ) )  ->  ( Q  <Q  ( D  .Q  E
)  ->  Q  e.  ( 1st `  ( A  .P.  B ) ) ) )
3220, 31mpd 13 . . 3  |-  ( (
ph  /\  E  e.  ( 1st `  B ) )  ->  Q  e.  ( 1st `  ( A  .P.  B ) ) )
3332orcd 652 . 2  |-  ( (
ph  /\  E  e.  ( 1st `  B ) )  ->  ( Q  e.  ( 1st `  ( A  .P.  B ) )  \/  R  e.  ( 2nd `  ( A  .P.  B ) ) ) )
342simprd 107 . . . . . . 7  |-  ( ph  ->  T  e.  Q. )
35 mulcomnqg 6481 . . . . . . 7  |-  ( ( T  e.  Q.  /\  U  e.  Q. )  ->  ( T  .Q  U
)  =  ( U  .Q  T ) )
3634, 6, 35syl2anc 391 . . . . . 6  |-  ( ph  ->  ( T  .Q  U
)  =  ( U  .Q  T ) )
37 mullocprlem.tdudr . . . . . . 7  |-  ( ph  ->  ( T  .Q  ( D  .Q  U ) ) 
<Q  ( D  .Q  R
) )
38 mulclnq 6474 . . . . . . . . . 10  |-  ( ( T  e.  Q.  /\  U  e.  Q. )  ->  ( T  .Q  U
)  e.  Q. )
3934, 6, 38syl2anc 391 . . . . . . . . 9  |-  ( ph  ->  ( T  .Q  U
)  e.  Q. )
4013simprd 107 . . . . . . . . 9  |-  ( ph  ->  R  e.  Q. )
41 ltmnqg 6499 . . . . . . . . 9  |-  ( ( ( T  .Q  U
)  e.  Q.  /\  R  e.  Q.  /\  D  e.  Q. )  ->  (
( T  .Q  U
)  <Q  R  <->  ( D  .Q  ( T  .Q  U
) )  <Q  ( D  .Q  R ) ) )
4239, 40, 5, 41syl3anc 1135 . . . . . . . 8  |-  ( ph  ->  ( ( T  .Q  U )  <Q  R  <->  ( D  .Q  ( T  .Q  U
) )  <Q  ( D  .Q  R ) ) )
4334, 5, 6, 8, 10caov12d 5682 . . . . . . . . 9  |-  ( ph  ->  ( T  .Q  ( D  .Q  U ) )  =  ( D  .Q  ( T  .Q  U
) ) )
4443breq1d 3774 . . . . . . . 8  |-  ( ph  ->  ( ( T  .Q  ( D  .Q  U
) )  <Q  ( D  .Q  R )  <->  ( D  .Q  ( T  .Q  U
) )  <Q  ( D  .Q  R ) ) )
4542, 44bitr4d 180 . . . . . . 7  |-  ( ph  ->  ( ( T  .Q  U )  <Q  R  <->  ( T  .Q  ( D  .Q  U
) )  <Q  ( D  .Q  R ) ) )
4637, 45mpbird 156 . . . . . 6  |-  ( ph  ->  ( T  .Q  U
)  <Q  R )
4736, 46eqbrtrrd 3786 . . . . 5  |-  ( ph  ->  ( U  .Q  T
)  <Q  R )
4847adantr 261 . . . 4  |-  ( (
ph  /\  T  e.  ( 2nd `  B ) )  ->  ( U  .Q  T )  <Q  R )
4923simprd 107 . . . . . . 7  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
5022, 49jca 290 . . . . . 6  |-  ( ph  ->  ( A  e.  P.  /\  U  e.  ( 2nd `  A ) ) )
5150adantr 261 . . . . 5  |-  ( (
ph  /\  T  e.  ( 2nd `  B ) )  ->  ( A  e.  P.  /\  U  e.  ( 2nd `  A
) ) )
5227anim1i 323 . . . . 5  |-  ( (
ph  /\  T  e.  ( 2nd `  B ) )  ->  ( B  e.  P.  /\  T  e.  ( 2nd `  B
) ) )
5340adantr 261 . . . . 5  |-  ( (
ph  /\  T  e.  ( 2nd `  B ) )  ->  R  e.  Q. )
54 mulnqpru 6667 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  U  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  T  e.  ( 2nd `  B
) ) )  /\  R  e.  Q. )  ->  ( ( U  .Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  .P.  B
) ) ) )
5551, 52, 53, 54syl21anc 1134 . . . 4  |-  ( (
ph  /\  T  e.  ( 2nd `  B ) )  ->  ( ( U  .Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  .P.  B ) ) ) )
5648, 55mpd 13 . . 3  |-  ( (
ph  /\  T  e.  ( 2nd `  B ) )  ->  R  e.  ( 2nd `  ( A  .P.  B ) ) )
5756olcd 653 . 2  |-  ( (
ph  /\  T  e.  ( 2nd `  B ) )  ->  ( Q  e.  ( 1st `  ( A  .P.  B ) )  \/  R  e.  ( 2nd `  ( A  .P.  B ) ) ) )
58 mullocprlem.edutdu . . . 4  |-  ( ph  ->  ( E  .Q  ( D  .Q  U ) ) 
<Q  ( T  .Q  ( D  .Q  U ) ) )
59 mulclnq 6474 . . . . . . 7  |-  ( ( D  e.  Q.  /\  U  e.  Q. )  ->  ( D  .Q  U
)  e.  Q. )
604, 59syl 14 . . . . . 6  |-  ( ph  ->  ( D  .Q  U
)  e.  Q. )
61 ltmnqg 6499 . . . . . 6  |-  ( ( E  e.  Q.  /\  T  e.  Q.  /\  ( D  .Q  U )  e. 
Q. )  ->  ( E  <Q  T  <->  ( ( D  .Q  U )  .Q  E )  <Q  (
( D  .Q  U
)  .Q  T ) ) )
623, 34, 60, 61syl3anc 1135 . . . . 5  |-  ( ph  ->  ( E  <Q  T  <->  ( ( D  .Q  U )  .Q  E )  <Q  (
( D  .Q  U
)  .Q  T ) ) )
63 mulcomnqg 6481 . . . . . . 7  |-  ( ( ( D  .Q  U
)  e.  Q.  /\  E  e.  Q. )  ->  ( ( D  .Q  U )  .Q  E
)  =  ( E  .Q  ( D  .Q  U ) ) )
6460, 3, 63syl2anc 391 . . . . . 6  |-  ( ph  ->  ( ( D  .Q  U )  .Q  E
)  =  ( E  .Q  ( D  .Q  U ) ) )
65 mulcomnqg 6481 . . . . . . 7  |-  ( ( ( D  .Q  U
)  e.  Q.  /\  T  e.  Q. )  ->  ( ( D  .Q  U )  .Q  T
)  =  ( T  .Q  ( D  .Q  U ) ) )
6660, 34, 65syl2anc 391 . . . . . 6  |-  ( ph  ->  ( ( D  .Q  U )  .Q  T
)  =  ( T  .Q  ( D  .Q  U ) ) )
6764, 66breq12d 3777 . . . . 5  |-  ( ph  ->  ( ( ( D  .Q  U )  .Q  E )  <Q  (
( D  .Q  U
)  .Q  T )  <-> 
( E  .Q  ( D  .Q  U ) ) 
<Q  ( T  .Q  ( D  .Q  U ) ) ) )
6862, 67bitrd 177 . . . 4  |-  ( ph  ->  ( E  <Q  T  <->  ( E  .Q  ( D  .Q  U
) )  <Q  ( T  .Q  ( D  .Q  U ) ) ) )
6958, 68mpbird 156 . . 3  |-  ( ph  ->  E  <Q  T )
70 prop 6573 . . . 4  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
71 prloc 6589 . . . 4  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  E  <Q  T )  ->  ( E  e.  ( 1st `  B )  \/  T  e.  ( 2nd `  B ) ) )
7270, 71sylan 267 . . 3  |-  ( ( B  e.  P.  /\  E  <Q  T )  -> 
( E  e.  ( 1st `  B )  \/  T  e.  ( 2nd `  B ) ) )
7327, 69, 72syl2anc 391 . 2  |-  ( ph  ->  ( E  e.  ( 1st `  B )  \/  T  e.  ( 2nd `  B ) ) )
7433, 57, 73mpjaodan 711 1  |-  ( ph  ->  ( Q  e.  ( 1st `  ( A  .P.  B ) )  \/  R  e.  ( 2nd `  ( A  .P.  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629    /\ w3a 885    = wceq 1243    e. wcel 1393   <.cop 3378   class class class wbr 3764   ` cfv 4902  (class class class)co 5512   1stc1st 5765   2ndc2nd 5766   Q.cnq 6378    .Q cmq 6381    <Q cltq 6383   P.cnp 6389    .P. cmp 6392
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-mi 6404  df-lti 6405  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-inp 6564  df-imp 6567
This theorem is referenced by:  mullocpr  6669
  Copyright terms: Public domain W3C validator