ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eqcocnv Unicode version

Theorem f1eqcocnv 5431
Description: Condition for function equality in terms of vanishing of the composition with the inverse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
f1eqcocnv  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( F  =  G  <->  ( `' F  o.  G )  =  (  _I  |`  A )
) )

Proof of Theorem f1eqcocnv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1cocnv1 5156 . . . 4  |-  ( F : A -1-1-> B  -> 
( `' F  o.  F )  =  (  _I  |`  A )
)
2 coeq2 4494 . . . . 5  |-  ( F  =  G  ->  ( `' F  o.  F
)  =  ( `' F  o.  G ) )
32eqeq1d 2048 . . . 4  |-  ( F  =  G  ->  (
( `' F  o.  F )  =  (  _I  |`  A )  <->  ( `' F  o.  G
)  =  (  _I  |`  A ) ) )
41, 3syl5ibcom 144 . . 3  |-  ( F : A -1-1-> B  -> 
( F  =  G  ->  ( `' F  o.  G )  =  (  _I  |`  A )
) )
54adantr 261 . 2  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( F  =  G  ->  ( `' F  o.  G )  =  (  _I  |`  A ) ) )
6 f1fn 5093 . . . . . . 7  |-  ( G : A -1-1-> B  ->  G  Fn  A )
76adantl 262 . . . . . 6  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  G  Fn  A )
87adantr 261 . . . . 5  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G )  =  (  _I  |`  A ) )  ->  G  Fn  A )
9 f1fn 5093 . . . . . . 7  |-  ( F : A -1-1-> B  ->  F  Fn  A )
109adantr 261 . . . . . 6  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  F  Fn  A )
1110adantr 261 . . . . 5  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G )  =  (  _I  |`  A ) )  ->  F  Fn  A )
12 equid 1589 . . . . . . . . . 10  |-  x  =  x
13 resieq 4622 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( x (  _I  |`  A ) x  <->  x  =  x ) )
1412, 13mpbiri 157 . . . . . . . . 9  |-  ( ( x  e.  A  /\  x  e.  A )  ->  x (  _I  |`  A ) x )
1514anidms 377 . . . . . . . 8  |-  ( x  e.  A  ->  x
(  _I  |`  A ) x )
1615adantl 262 . . . . . . 7  |-  ( ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G
)  =  (  _I  |`  A ) )  /\  x  e.  A )  ->  x (  _I  |`  A ) x )
17 breq 3766 . . . . . . . 8  |-  ( ( `' F  o.  G
)  =  (  _I  |`  A )  ->  (
x ( `' F  o.  G ) x  <->  x (  _I  |`  A ) x ) )
1817ad2antlr 458 . . . . . . 7  |-  ( ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G
)  =  (  _I  |`  A ) )  /\  x  e.  A )  ->  ( x ( `' F  o.  G ) x  <->  x (  _I  |`  A ) x ) )
1916, 18mpbird 156 . . . . . 6  |-  ( ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G
)  =  (  _I  |`  A ) )  /\  x  e.  A )  ->  x ( `' F  o.  G ) x )
20 vex 2560 . . . . . . . . . 10  |-  x  e. 
_V
2120, 20brco 4506 . . . . . . . . 9  |-  ( x ( `' F  o.  G ) x  <->  E. y
( x G y  /\  y `' F x ) )
22 fnfun 4996 . . . . . . . . . . . . . . . . 17  |-  ( G  Fn  A  ->  Fun  G )
237, 22syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  Fun  G )
2423adantr 261 . . . . . . . . . . . . . . 15  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  Fun  G )
25 fndm 4998 . . . . . . . . . . . . . . . . . 18  |-  ( G  Fn  A  ->  dom  G  =  A )
267, 25syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  dom  G  =  A )
2726eleq2d 2107 . . . . . . . . . . . . . . . 16  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( x  e.  dom  G  <->  x  e.  A ) )
2827biimpar 281 . . . . . . . . . . . . . . 15  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  x  e.  dom  G )
29 funopfvb 5217 . . . . . . . . . . . . . . 15  |-  ( ( Fun  G  /\  x  e.  dom  G )  -> 
( ( G `  x )  =  y  <->  <. x ,  y >.  e.  G ) )
3024, 28, 29syl2anc 391 . . . . . . . . . . . . . 14  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
( G `  x
)  =  y  <->  <. x ,  y >.  e.  G
) )
3130bicomd 129 . . . . . . . . . . . . 13  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  ( <. x ,  y >.  e.  G  <->  ( G `  x )  =  y ) )
32 df-br 3765 . . . . . . . . . . . . 13  |-  ( x G y  <->  <. x ,  y >.  e.  G
)
33 eqcom 2042 . . . . . . . . . . . . 13  |-  ( y  =  ( G `  x )  <->  ( G `  x )  =  y )
3431, 32, 333bitr4g 212 . . . . . . . . . . . 12  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
x G y  <->  y  =  ( G `  x ) ) )
3534biimpd 132 . . . . . . . . . . 11  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
x G y  -> 
y  =  ( G `
 x ) ) )
36 fnfun 4996 . . . . . . . . . . . . . . . . 17  |-  ( F  Fn  A  ->  Fun  F )
3710, 36syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  Fun  F )
3837adantr 261 . . . . . . . . . . . . . . 15  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  Fun  F )
39 fndm 4998 . . . . . . . . . . . . . . . . . 18  |-  ( F  Fn  A  ->  dom  F  =  A )
4010, 39syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  dom  F  =  A )
4140eleq2d 2107 . . . . . . . . . . . . . . . 16  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( x  e.  dom  F  <->  x  e.  A ) )
4241biimpar 281 . . . . . . . . . . . . . . 15  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  x  e.  dom  F )
43 funopfvb 5217 . . . . . . . . . . . . . . 15  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  =  y  <->  <. x ,  y >.  e.  F ) )
4438, 42, 43syl2anc 391 . . . . . . . . . . . . . 14  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
( F `  x
)  =  y  <->  <. x ,  y >.  e.  F
) )
45 df-br 3765 . . . . . . . . . . . . . 14  |-  ( x F y  <->  <. x ,  y >.  e.  F
)
4644, 45syl6rbbr 188 . . . . . . . . . . . . 13  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
x F y  <->  ( F `  x )  =  y ) )
47 vex 2560 . . . . . . . . . . . . . 14  |-  y  e. 
_V
4847, 20brcnv 4518 . . . . . . . . . . . . 13  |-  ( y `' F x  <->  x F
y )
49 eqcom 2042 . . . . . . . . . . . . 13  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
5046, 48, 493bitr4g 212 . . . . . . . . . . . 12  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
y `' F x  <-> 
y  =  ( F `
 x ) ) )
5150biimpd 132 . . . . . . . . . . 11  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
y `' F x  ->  y  =  ( F `  x ) ) )
5235, 51anim12d 318 . . . . . . . . . 10  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
( x G y  /\  y `' F x )  ->  (
y  =  ( G `
 x )  /\  y  =  ( F `  x ) ) ) )
5352eximdv 1760 . . . . . . . . 9  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  ( E. y ( x G y  /\  y `' F x )  ->  E. y ( y  =  ( G `  x
)  /\  y  =  ( F `  x ) ) ) )
5421, 53syl5bi 141 . . . . . . . 8  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
x ( `' F  o.  G ) x  ->  E. y ( y  =  ( G `  x
)  /\  y  =  ( F `  x ) ) ) )
556anim1i 323 . . . . . . . . . 10  |-  ( ( G : A -1-1-> B  /\  x  e.  A
)  ->  ( G  Fn  A  /\  x  e.  A ) )
5655adantll 445 . . . . . . . . 9  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  ( G  Fn  A  /\  x  e.  A )
)
57 funfvex 5192 . . . . . . . . . 10  |-  ( ( Fun  G  /\  x  e.  dom  G )  -> 
( G `  x
)  e.  _V )
5857funfni 4999 . . . . . . . . 9  |-  ( ( G  Fn  A  /\  x  e.  A )  ->  ( G `  x
)  e.  _V )
59 eqvincg 2668 . . . . . . . . 9  |-  ( ( G `  x )  e.  _V  ->  (
( G `  x
)  =  ( F `
 x )  <->  E. y
( y  =  ( G `  x )  /\  y  =  ( F `  x ) ) ) )
6056, 58, 593syl 17 . . . . . . . 8  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
( G `  x
)  =  ( F `
 x )  <->  E. y
( y  =  ( G `  x )  /\  y  =  ( F `  x ) ) ) )
6154, 60sylibrd 158 . . . . . . 7  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
x ( `' F  o.  G ) x  -> 
( G `  x
)  =  ( F `
 x ) ) )
6261adantlr 446 . . . . . 6  |-  ( ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G
)  =  (  _I  |`  A ) )  /\  x  e.  A )  ->  ( x ( `' F  o.  G ) x  ->  ( G `  x )  =  ( F `  x ) ) )
6319, 62mpd 13 . . . . 5  |-  ( ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G
)  =  (  _I  |`  A ) )  /\  x  e.  A )  ->  ( G `  x
)  =  ( F `
 x ) )
648, 11, 63eqfnfvd 5268 . . . 4  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G )  =  (  _I  |`  A ) )  ->  G  =  F )
6564eqcomd 2045 . . 3  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G )  =  (  _I  |`  A ) )  ->  F  =  G )
6665ex 108 . 2  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( ( `' F  o.  G
)  =  (  _I  |`  A )  ->  F  =  G ) )
675, 66impbid 120 1  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( F  =  G  <->  ( `' F  o.  G )  =  (  _I  |`  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557   <.cop 3378   class class class wbr 3764    _I cid 4025   `'ccnv 4344   dom cdm 4345    |` cres 4347    o. ccom 4349   Fun wfun 4896    Fn wfn 4897   -1-1->wf1 4899   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator