Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqvincg | Unicode version |
Description: A variable introduction law for class equality, deduction version. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
Ref | Expression |
---|---|
eqvincg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2568 | . . . 4 | |
2 | ax-1 5 | . . . . . 6 | |
3 | eqtr 2057 | . . . . . . 7 | |
4 | 3 | ex 108 | . . . . . 6 |
5 | 2, 4 | jca 290 | . . . . 5 |
6 | 5 | eximi 1491 | . . . 4 |
7 | pm3.43 534 | . . . . 5 | |
8 | 7 | eximi 1491 | . . . 4 |
9 | 1, 6, 8 | 3syl 17 | . . 3 |
10 | nfv 1421 | . . . 4 | |
11 | 10 | 19.37-1 1564 | . . 3 |
12 | 9, 11 | syl 14 | . 2 |
13 | eqtr2 2058 | . . 3 | |
14 | 13 | exlimiv 1489 | . 2 |
15 | 12, 14 | impbid1 130 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wceq 1243 wex 1381 wcel 1393 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-v 2559 |
This theorem is referenced by: dff13 5407 f1eqcocnv 5431 |
Copyright terms: Public domain | W3C validator |