ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfvd Unicode version

Theorem eqfnfvd 5246
Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
eqfnfvd.1  |-  ( ph  ->  F  Fn  A )
eqfnfvd.2  |-  ( ph  ->  G  Fn  A )
eqfnfvd.3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )
Assertion
Ref Expression
eqfnfvd  |-  ( ph  ->  F  =  G )
Distinct variable groups:    x, A    x, F    x, G    ph, x

Proof of Theorem eqfnfvd
StepHypRef Expression
1 eqfnfvd.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )
21ralrimiva 2389 . 2  |-  ( ph  ->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
3 eqfnfvd.1 . . 3  |-  ( ph  ->  F  Fn  A )
4 eqfnfvd.2 . . 3  |-  ( ph  ->  G  Fn  A )
5 eqfnfv 5243 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
63, 4, 5syl2anc 391 . 2  |-  ( ph  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
72, 6mpbird 156 1  |-  ( ph  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   A.wral 2303    Fn wfn 4875   ` cfv 4880
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3872  ax-pow 3924  ax-pr 3941
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2308  df-rex 2309  df-v 2556  df-sbc 2762  df-csb 2850  df-un 2919  df-in 2921  df-ss 2928  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3578  df-br 3762  df-opab 3816  df-mpt 3817  df-id 4027  df-xp 4329  df-rel 4330  df-cnv 4331  df-co 4332  df-dm 4333  df-iota 4845  df-fun 4882  df-fn 4883  df-fv 4888
This theorem is referenced by:  foeqcnvco  5408  f1eqcocnv  5409  tfrlem1  5901  frecrdg  5970  iseqss  9095  iseqfeq2  9098  iseqfeq  9100
  Copyright terms: Public domain W3C validator