ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq Structured version   Unicode version

Theorem breq 3757
Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.)
Assertion
Ref Expression
breq  R  S  R  S

Proof of Theorem breq
StepHypRef Expression
1 eleq2 2098 . 2  R  S  <. ,  >.  R  <. ,  >.  S
2 df-br 3756 . 2  R  <. ,  >.  R
3 df-br 3756 . 2  S  <. ,  >.  S
41, 2, 33bitr4g 212 1  R  S  R  S
Colors of variables: wff set class
Syntax hints:   wi 4   wb 98   wceq 1242   wcel 1390   <.cop 3370   class class class wbr 3755
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-cleq 2030  df-clel 2033  df-br 3756
This theorem is referenced by:  breqi  3761  breqd  3766  poeq1  4027  soeq1  4043  fveq1  5120  foeqcnvco  5373  f1eqcocnv  5374  isoeq2  5385  isoeq3  5386  ofreq  5657
  Copyright terms: Public domain W3C validator