ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzn0 Structured version   GIF version

Theorem uzn0 8244
Description: The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.)
Assertion
Ref Expression
uzn0 (𝑀 ran ℤ𝑀 ≠ ∅)

Proof of Theorem uzn0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uzf 8232 . . 3 :ℤ⟶𝒫 ℤ
2 ffn 4989 . . 3 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
3 fvelrnb 5164 . . 3 (ℤ Fn ℤ → (𝑀 ran ℤ𝑘 ℤ (ℤ𝑘) = 𝑀))
41, 2, 3mp2b 8 . 2 (𝑀 ran ℤ𝑘 ℤ (ℤ𝑘) = 𝑀)
5 uzid 8243 . . . . 5 (𝑘 ℤ → 𝑘 (ℤ𝑘))
6 ne0i 3224 . . . . 5 (𝑘 (ℤ𝑘) → (ℤ𝑘) ≠ ∅)
75, 6syl 14 . . . 4 (𝑘 ℤ → (ℤ𝑘) ≠ ∅)
8 neeq1 2213 . . . 4 ((ℤ𝑘) = 𝑀 → ((ℤ𝑘) ≠ ∅ ↔ 𝑀 ≠ ∅))
97, 8syl5ibcom 144 . . 3 (𝑘 ℤ → ((ℤ𝑘) = 𝑀𝑀 ≠ ∅))
109rexlimiv 2421 . 2 (𝑘 ℤ (ℤ𝑘) = 𝑀𝑀 ≠ ∅)
114, 10sylbi 114 1 (𝑀 ran ℤ𝑀 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   = wceq 1242   wcel 1390  wne 2201  wrex 2301  c0 3218  𝒫 cpw 3351  ran crn 4289   Fn wfn 4840  wf 4841  cfv 4845  cz 8001  cuz 8229
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935  ax-un 4136  ax-setind 4220  ax-cnex 6754  ax-resscn 6755  ax-pre-ltirr 6775
This theorem depends on definitions:  df-bi 110  df-3or 885  df-3an 886  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ne 2203  df-nel 2204  df-ral 2305  df-rex 2306  df-rab 2309  df-v 2553  df-sbc 2759  df-dif 2914  df-un 2916  df-in 2918  df-ss 2925  df-nul 3219  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-mpt 3811  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-f 4849  df-fv 4853  df-ov 5458  df-pnf 6839  df-mnf 6840  df-xr 6841  df-ltxr 6842  df-le 6843  df-neg 6962  df-z 8002  df-uz 8230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator