ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzn0 GIF version

Theorem uzn0 8488
Description: The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.)
Assertion
Ref Expression
uzn0 (𝑀 ∈ ran ℤ𝑀 ≠ ∅)

Proof of Theorem uzn0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uzf 8476 . . 3 :ℤ⟶𝒫 ℤ
2 ffn 5046 . . 3 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
3 fvelrnb 5221 . . 3 (ℤ Fn ℤ → (𝑀 ∈ ran ℤ ↔ ∃𝑘 ∈ ℤ (ℤ𝑘) = 𝑀))
41, 2, 3mp2b 8 . 2 (𝑀 ∈ ran ℤ ↔ ∃𝑘 ∈ ℤ (ℤ𝑘) = 𝑀)
5 uzid 8487 . . . . 5 (𝑘 ∈ ℤ → 𝑘 ∈ (ℤ𝑘))
6 ne0i 3230 . . . . 5 (𝑘 ∈ (ℤ𝑘) → (ℤ𝑘) ≠ ∅)
75, 6syl 14 . . . 4 (𝑘 ∈ ℤ → (ℤ𝑘) ≠ ∅)
8 neeq1 2218 . . . 4 ((ℤ𝑘) = 𝑀 → ((ℤ𝑘) ≠ ∅ ↔ 𝑀 ≠ ∅))
97, 8syl5ibcom 144 . . 3 (𝑘 ∈ ℤ → ((ℤ𝑘) = 𝑀𝑀 ≠ ∅))
109rexlimiv 2427 . 2 (∃𝑘 ∈ ℤ (ℤ𝑘) = 𝑀𝑀 ≠ ∅)
114, 10sylbi 114 1 (𝑀 ∈ ran ℤ𝑀 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   = wceq 1243  wcel 1393  wne 2204  wrex 2307  c0 3224  𝒫 cpw 3359  ran crn 4346   Fn wfn 4897  wf 4898  cfv 4902  cz 8245  cuz 8473
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltirr 6996
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fv 4910  df-ov 5515  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-neg 7185  df-z 8246  df-uz 8474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator