![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
mp3an.1 | ⊢ 𝜑 |
mp3an.2 | ⊢ 𝜓 |
mp3an.3 | ⊢ 𝜒 |
mp3an.4 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an | ⊢ 𝜃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an.2 | . 2 ⊢ 𝜓 | |
2 | mp3an.3 | . 2 ⊢ 𝜒 | |
3 | mp3an.1 | . . 3 ⊢ 𝜑 | |
4 | mp3an.4 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
5 | 3, 4 | mp3an1 1219 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
6 | 1, 2, 5 | mp2an 402 | 1 ⊢ 𝜃 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 885 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 df-3an 887 |
This theorem is referenced by: vtocl3 2610 raltp 3427 rextp 3428 ordtriexmidlem 4245 ordtri2or2exmidlem 4251 onsucelsucexmidlem 4254 ordsoexmid 4286 funopg 4934 ftp 5348 caovass 5661 caovdi 5680 ofmres 5763 mpt2fvexi 5832 dmtpos 5871 rntpos 5872 dftpos3 5877 tpostpos 5879 xpcomen 6301 1lt2pi 6438 1lt2nq 6504 halfnqq 6508 m1p1sr 6845 m1m1sr 6846 addassi 7035 mulassi 7036 adddii 7037 adddiri 7038 lttri 7122 lelttri 7123 ltletri 7124 letri 7125 mul12i 7159 mul32i 7160 add12i 7174 add32i 7175 addcani 7193 addcan2i 7194 subaddi 7298 subadd2i 7299 subsub23i 7301 addsubassi 7302 addsubi 7303 subcani 7304 subcan2i 7305 pnncani 7306 subdii 7404 subdiri 7405 ltadd2i 7417 ltadd1i 7494 leadd1i 7495 leadd2i 7496 ltsubaddi 7497 lesubaddi 7498 ltsubadd2i 7499 lesubadd2i 7500 ltaddsubi 7501 gtapii 7623 mulcanapi 7648 divclapi 7730 divcanap2i 7731 divcanap1i 7732 divrecapi 7733 divcanap3i 7734 divcanap4i 7735 divassapi 7744 divdirapi 7745 div23api 7746 div11api 7747 1mhlfehlf 8143 halfpm6th 8145 unirnioo 8842 nnenom 9210 m1expcl2 9277 i4 9355 expnass 9357 abs3difi 9752 ex-fl 9895 |
Copyright terms: Public domain | W3C validator |