![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpcomen | GIF version |
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
xpcomen.1 | ⊢ 𝐴 ∈ V |
xpcomen.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
xpcomen | ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcomen.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | xpcomen.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | xpex 4453 | . 2 ⊢ (𝐴 × 𝐵) ∈ V |
4 | 2, 1 | xpex 4453 | . 2 ⊢ (𝐵 × 𝐴) ∈ V |
5 | eqid 2040 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) | |
6 | 5 | xpcomf1o 6299 | . 2 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
7 | f1oen2g 6235 | . 2 ⊢ (((𝐴 × 𝐵) ∈ V ∧ (𝐵 × 𝐴) ∈ V ∧ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) | |
8 | 3, 4, 6, 7 | mp3an 1232 | 1 ⊢ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1393 Vcvv 2557 {csn 3375 ∪ cuni 3580 class class class wbr 3764 ↦ cmpt 3818 × cxp 4343 ◡ccnv 4344 –1-1-onto→wf1o 4901 ≈ cen 6219 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-sbc 2765 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-1st 5767 df-2nd 5768 df-en 6222 |
This theorem is referenced by: xpcomeng 6302 |
Copyright terms: Public domain | W3C validator |