Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovass GIF version

Theorem caovass 5661
 Description: Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
Hypotheses
Ref Expression
caovass.1 𝐴 ∈ V
caovass.2 𝐵 ∈ V
caovass.3 𝐶 ∈ V
caovass.4 ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
Assertion
Ref Expression
caovass ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem caovass
StepHypRef Expression
1 caovass.1 . 2 𝐴 ∈ V
2 caovass.2 . 2 𝐵 ∈ V
3 caovass.3 . 2 𝐶 ∈ V
4 tru 1247 . . 3
5 caovass.4 . . . . 5 ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
65a1i 9 . . . 4 ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
76caovassg 5659 . . 3 ((⊤ ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
84, 7mpan 400 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
91, 2, 3, 8mp3an 1232 1 ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))
 Colors of variables: wff set class Syntax hints:   ∧ wa 97   ∧ w3a 885   = wceq 1243  ⊤wtru 1244   ∈ wcel 1393  Vcvv 2557  (class class class)co 5512 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515 This theorem is referenced by:  caov32  5688  caov12  5689  caov31  5690  caov13  5691
 Copyright terms: Public domain W3C validator