Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funeqi | GIF version |
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
funeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
funeqi | ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | funeq 4921 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (Fun 𝐴 ↔ Fun 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 = wceq 1243 Fun wfun 4896 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-in 2924 df-ss 2931 df-br 3765 df-opab 3819 df-rel 4352 df-cnv 4353 df-co 4354 df-fun 4904 |
This theorem is referenced by: funmpt 4938 funmpt2 4939 funprg 4949 funtpg 4950 funtp 4952 funcnvuni 4968 f1cnvcnv 5100 f1co 5101 fun11iun 5147 f10 5160 funoprabg 5600 mpt2fun 5603 ovidig 5618 tposfun 5875 rdgfun 5960 th3qcor 6210 ssdomg 6258 |
Copyright terms: Public domain | W3C validator |