Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeq GIF version

Theorem funeq 4921
 Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funeq (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))

Proof of Theorem funeq
StepHypRef Expression
1 eqimss2 2998 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 funss 4920 . . 3 (𝐵𝐴 → (Fun 𝐴 → Fun 𝐵))
31, 2syl 14 . 2 (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵))
4 eqimss 2997 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 funss 4920 . . 3 (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
64, 5syl 14 . 2 (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴))
73, 6impbid 120 1 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98   = wceq 1243   ⊆ wss 2917  Fun wfun 4896 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-in 2924  df-ss 2931  df-br 3765  df-opab 3819  df-rel 4352  df-cnv 4353  df-co 4354  df-fun 4904 This theorem is referenced by:  funeqi  4922  funeqd  4923  fununi  4967  funcnvuni  4968  cnvresid  4973  fneq1  4987  fundmeng  6287
 Copyright terms: Public domain W3C validator