ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ovi Structured version   GIF version

Theorem f1ovi 5108
Description: The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.)
Assertion
Ref Expression
f1ovi I :V–1-1-onto→V

Proof of Theorem f1ovi
StepHypRef Expression
1 f1oi 5107 . 2 ( I ↾ V):V–1-1-onto→V
2 reli 4408 . . . 4 Rel I
3 dfrel3 4721 . . . 4 (Rel I ↔ ( I ↾ V) = I )
42, 3mpbi 133 . . 3 ( I ↾ V) = I
5 f1oeq1 5060 . . 3 (( I ↾ V) = I → (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V))
64, 5ax-mp 7 . 2 (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V)
71, 6mpbi 133 1 I :V–1-1-onto→V
Colors of variables: wff set class
Syntax hints:  wb 98   = wceq 1242  Vcvv 2551   I cid 4016  cres 4290  Rel wrel 4293  1-1-ontowf1o 4844
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-fun 4847  df-fn 4848  df-f 4849  df-f1 4850  df-fo 4851  df-f1o 4852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator