Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqidd | GIF version |
Description: Class identity law with antecedent. (Contributed by NM, 21-Aug-2008.) |
Ref | Expression |
---|---|
eqidd | ⊢ (𝜑 → 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2040 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 𝐴 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-gen 1338 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 |
This theorem is referenced by: cbvraldva 2539 cbvrexdva 2540 nelrdva 2746 opeq2 3550 mpteq1 3841 tfisi 4310 feq23d 5042 fvmptdv2 5260 elrnrexdm 5306 fmptco 5330 ftpg 5347 fliftfun 5436 fliftval 5440 cbvmpt2 5583 eqfnov2 5608 ovmpt2d 5628 ovmpt2dv2 5634 fnofval 5721 ofrval 5722 off 5724 ofres 5725 suppssof1 5728 ofco 5729 caofref 5732 caofrss 5735 caoftrn 5736 rdgivallem 5968 iserd 6132 fzo0to3tp 9075 iseqovex 9219 iseqid 9247 resqrexlemp1rp 9604 resqrexlemfp1 9607 resqrex 9624 climcl 9803 clim2 9804 climuni 9814 climeq 9820 2clim 9822 climshftlemg 9823 climabs0 9828 climcn1 9829 climcn2 9830 climge0 9845 climsqz 9855 climsqz2 9856 climcau 9866 climrecvg1n 9867 climcaucn 9870 serif0 9871 ialginv 9886 ialgfx 9891 |
Copyright terms: Public domain | W3C validator |