ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpt2d GIF version

Theorem ovmpt2d 5628
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
ovmpt2d.1 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
ovmpt2d.2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
ovmpt2d.3 (𝜑𝐴𝐶)
ovmpt2d.4 (𝜑𝐵𝐷)
ovmpt2d.5 (𝜑𝑆𝑋)
Assertion
Ref Expression
ovmpt2d (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem ovmpt2d
StepHypRef Expression
1 ovmpt2d.1 . 2 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
2 ovmpt2d.2 . 2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
3 eqidd 2041 . 2 ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐷)
4 ovmpt2d.3 . 2 (𝜑𝐴𝐶)
5 ovmpt2d.4 . 2 (𝜑𝐵𝐷)
6 ovmpt2d.5 . 2 (𝜑𝑆𝑋)
71, 2, 3, 4, 5, 6ovmpt2dx 5627 1 (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  (class class class)co 5512  cmpt2 5514
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517
This theorem is referenced by:  ovmpt2ga  5630  sprmpt2  5857  iseqovex  9219  resqrexlemp1rp  9604  resqrexlemfp1  9607
  Copyright terms: Public domain W3C validator