ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcl GIF version

Theorem climcl 9803
Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
climcl (𝐹𝐴𝐴 ∈ ℂ)

Proof of Theorem climcl
Dummy variables 𝑥 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 9801 . . . . 5 Rel ⇝
21brrelexi 4384 . . . 4 (𝐹𝐴𝐹 ∈ V)
3 eqidd 2041 . . . 4 ((𝐹𝐴𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
42, 3clim 9802 . . 3 (𝐹𝐴 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
54ibi 165 . 2 (𝐹𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
65simpld 105 1 (𝐹𝐴𝐴 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wcel 1393  wral 2306  wrex 2307  Vcvv 2557   class class class wbr 3764  cfv 4902  (class class class)co 5512  cc 6887   < clt 7060  cmin 7182  cz 8245  cuz 8473  +crp 8583  abscabs 9595  cli 9799
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-cnex 6975  ax-resscn 6976
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fv 4910  df-ov 5515  df-neg 7185  df-z 8246  df-uz 8474  df-clim 9800
This theorem is referenced by:  climuni  9814  fclim  9815  climeu  9817  climreu  9818  2clim  9822  climcn1lem  9839  climrecl  9844  climadd  9846  climmul  9847  climsub  9848  climaddc2  9850  climcau  9866
  Copyright terms: Public domain W3C validator