Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  2clim GIF version

Theorem 2clim 9822
 Description: If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1 𝑍 = (ℤ𝑀)
2clim.2 (𝜑𝑀 ∈ ℤ)
2clim.3 (𝜑𝐺𝑉)
2clim.5 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2clim.6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥)
2clim.7 (𝜑𝐹𝐴)
Assertion
Ref Expression
2clim (𝜑𝐺𝐴)
Distinct variable groups:   𝑗,𝑘,𝐴   𝑥,𝑗,𝐹,𝑘   𝑗,𝐺,𝑥   𝑗,𝑀   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘,𝑥   𝑘,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑀(𝑥,𝑘)   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem 2clim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2clim.6 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥)
2 rphalfcl 8610 . . . . . 6 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
3 breq2 3768 . . . . . . . 8 (𝑥 = (𝑦 / 2) → ((abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2)))
43rexralbidv 2350 . . . . . . 7 (𝑥 = (𝑦 / 2) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2)))
54rspccva 2655 . . . . . 6 ((∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥 ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2))
61, 2, 5syl2an 273 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2))
7 2clim.1 . . . . . 6 𝑍 = (ℤ𝑀)
8 2clim.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
98adantr 261 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
102adantl 262 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ+)
11 eqidd 2041 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
12 2clim.7 . . . . . . 7 (𝜑𝐹𝐴)
1312adantr 261 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝐹𝐴)
147, 9, 10, 11, 13climi 9808 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)))
157rexanuz2 9589 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
166, 14, 15sylanbrc 394 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
177uztrn2 8490 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
18 an12 495 . . . . . . . . 9 (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) ↔ ((𝐹𝑘) ∈ ℂ ∧ ((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
19 simprr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (𝐹𝑘) ∈ ℂ)
20 2clim.5 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2120ad2ant2r 478 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (𝐺𝑘) ∈ ℂ)
2219, 21abssubd 9789 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (abs‘((𝐹𝑘) − (𝐺𝑘))) = (abs‘((𝐺𝑘) − (𝐹𝑘))))
2322breq1d 3774 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → ((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ↔ (abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2)))
2423anbi1d 438 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) ↔ ((abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
25 climcl 9803 . . . . . . . . . . . . . . 15 (𝐹𝐴𝐴 ∈ ℂ)
2612, 25syl 14 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
2726ad2antrr 457 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → 𝐴 ∈ ℂ)
28 rpre 8589 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
2928ad2antlr 458 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → 𝑦 ∈ ℝ)
30 abs3lem 9707 . . . . . . . . . . . . 13 ((((𝐺𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ 𝑦 ∈ ℝ)) → (((abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3121, 27, 19, 29, 30syl22anc 1136 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (((abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3224, 31sylbid 139 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3332anassrs 380 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3433expimpd 345 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ ((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3518, 34syl5bi 141 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3617, 35sylan2 270 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3736anassrs 380 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3837ralimdva 2387 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3938reximdva 2421 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
4016, 39mpd 13 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
4140ralrimiva 2392 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
42 2clim.3 . . 3 (𝜑𝐺𝑉)
43 eqidd 2041 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
447, 8, 42, 43, 26, 20clim2c 9805 . 2 (𝜑 → (𝐺𝐴 ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
4541, 44mpbird 156 1 (𝜑𝐺𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   = wceq 1243   ∈ wcel 1393  ∀wral 2306  ∃wrex 2307   class class class wbr 3764  ‘cfv 4902  (class class class)co 5512  ℂcc 6887  ℝcr 6888   < clt 7060   − cmin 7182   / cdiv 7651  2c2 7964  ℤcz 8245  ℤ≥cuz 8473  ℝ+crp 8583  abscabs 9595   ⇝ cli 9799 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002  ax-arch 7003  ax-caucvg 7004 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-3 7974  df-4 7975  df-n0 8182  df-z 8246  df-uz 8474  df-rp 8584  df-iseq 9212  df-iexp 9255  df-cj 9442  df-re 9443  df-im 9444  df-rsqrt 9596  df-abs 9597  df-clim 9800 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator