![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvmptdv2 | GIF version |
Description: Alternate deduction version of fvmpt 5249, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
Ref | Expression |
---|---|
fvmptdv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptdv2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) |
fvmptdv2.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
fvmptdv2 | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2041 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
2 | fvmptdv2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
3 | fvmptdv2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
4 | elex 2566 | . . . . . 6 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ V) | |
5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
6 | isset 2561 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
7 | 5, 6 | sylib 127 | . . . 4 ⊢ (𝜑 → ∃𝑥 𝑥 = 𝐴) |
8 | fvmptdv2.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) | |
9 | elex 2566 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
10 | 8, 9 | syl 14 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ V) |
11 | 2, 10 | eqeltrrd 2115 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 ∈ V) |
12 | 7, 11 | exlimddv 1778 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
13 | 1, 2, 3, 12 | fvmptd 5253 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = 𝐶) |
14 | fveq1 5177 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) | |
15 | 14 | eqeq1d 2048 | . 2 ⊢ (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → ((𝐹‘𝐴) = 𝐶 ↔ ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = 𝐶)) |
16 | 13, 15 | syl5ibrcom 146 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1243 ∃wex 1381 ∈ wcel 1393 Vcvv 2557 ↦ cmpt 3818 ‘cfv 4902 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-sbc 2765 df-csb 2853 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-iota 4867 df-fun 4904 df-fv 4910 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |