ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptdv2 GIF version

Theorem fvmptdv2 5260
Description: Alternate deduction version of fvmpt 5249, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
fvmptdv2.1 (𝜑𝐴𝐷)
fvmptdv2.2 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
fvmptdv2.3 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
fvmptdv2 (𝜑 → (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptdv2
StepHypRef Expression
1 eqidd 2041 . . 3 (𝜑 → (𝑥𝐷𝐵) = (𝑥𝐷𝐵))
2 fvmptdv2.3 . . 3 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
3 fvmptdv2.1 . . 3 (𝜑𝐴𝐷)
4 elex 2566 . . . . . 6 (𝐴𝐷𝐴 ∈ V)
53, 4syl 14 . . . . 5 (𝜑𝐴 ∈ V)
6 isset 2561 . . . . 5 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
75, 6sylib 127 . . . 4 (𝜑 → ∃𝑥 𝑥 = 𝐴)
8 fvmptdv2.2 . . . . . 6 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
9 elex 2566 . . . . . 6 (𝐵𝑉𝐵 ∈ V)
108, 9syl 14 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝐵 ∈ V)
112, 10eqeltrrd 2115 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐶 ∈ V)
127, 11exlimddv 1778 . . 3 (𝜑𝐶 ∈ V)
131, 2, 3, 12fvmptd 5253 . 2 (𝜑 → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
14 fveq1 5177 . . 3 (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴))
1514eqeq1d 2048 . 2 (𝐹 = (𝑥𝐷𝐵) → ((𝐹𝐴) = 𝐶 ↔ ((𝑥𝐷𝐵)‘𝐴) = 𝐶))
1613, 15syl5ibrcom 146 1 (𝜑 → (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wex 1381  wcel 1393  Vcvv 2557  cmpt 3818  cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator