ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecopovsym Structured version   GIF version

Theorem ecopovsym 6138
Description: Assuming the operation 𝐹 is commutative, show that the relation , specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
ecopopr.1 = {⟨x, y⟩ ∣ ((x (𝑆 × 𝑆) y (𝑆 × 𝑆)) zwvu((x = ⟨z, w y = ⟨v, u⟩) (z + u) = (w + v)))}
ecopopr.com (x + y) = (y + x)
Assertion
Ref Expression
ecopovsym (A BB A)
Distinct variable groups:   x,y,z,w,v,u, +   x,𝑆,y,z,w,v,u
Allowed substitution hints:   A(x,y,z,w,v,u)   B(x,y,z,w,v,u)   (x,y,z,w,v,u)

Proof of Theorem ecopovsym
Dummy variables f g 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecopopr.1 . . . . 5 = {⟨x, y⟩ ∣ ((x (𝑆 × 𝑆) y (𝑆 × 𝑆)) zwvu((x = ⟨z, w y = ⟨v, u⟩) (z + u) = (w + v)))}
2 opabssxp 4357 . . . . 5 {⟨x, y⟩ ∣ ((x (𝑆 × 𝑆) y (𝑆 × 𝑆)) zwvu((x = ⟨z, w y = ⟨v, u⟩) (z + u) = (w + v)))} ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
31, 2eqsstri 2969 . . . 4 ⊆ ((𝑆 × 𝑆) × (𝑆 × 𝑆))
43brel 4335 . . 3 (A B → (A (𝑆 × 𝑆) B (𝑆 × 𝑆)))
5 eqid 2037 . . . 4 (𝑆 × 𝑆) = (𝑆 × 𝑆)
6 breq1 3758 . . . . 5 (⟨f, g⟩ = A → (⟨f, g, 𝑡⟩ ↔ A , 𝑡⟩))
7 breq2 3759 . . . . 5 (⟨f, g⟩ = A → (⟨, 𝑡f, g⟩ ↔ ⟨, 𝑡 A))
86, 7bibi12d 224 . . . 4 (⟨f, g⟩ = A → ((⟨f, g, 𝑡⟩ ↔ ⟨, 𝑡f, g⟩) ↔ (A , 𝑡⟩ ↔ ⟨, 𝑡 A)))
9 breq2 3759 . . . . 5 (⟨, 𝑡⟩ = B → (A , 𝑡⟩ ↔ A B))
10 breq1 3758 . . . . 5 (⟨, 𝑡⟩ = B → (⟨, 𝑡 AB A))
119, 10bibi12d 224 . . . 4 (⟨, 𝑡⟩ = B → ((A , 𝑡⟩ ↔ ⟨, 𝑡 A) ↔ (A BB A)))
121ecopoveq 6137 . . . . . 6 (((f 𝑆 g 𝑆) ( 𝑆 𝑡 𝑆)) → (⟨f, g, 𝑡⟩ ↔ (f + 𝑡) = (g + )))
13 vex 2554 . . . . . . . . 9 f V
14 vex 2554 . . . . . . . . 9 𝑡 V
15 ecopopr.com . . . . . . . . 9 (x + y) = (y + x)
1613, 14, 15caovcom 5600 . . . . . . . 8 (f + 𝑡) = (𝑡 + f)
17 vex 2554 . . . . . . . . 9 g V
18 vex 2554 . . . . . . . . 9 V
1917, 18, 15caovcom 5600 . . . . . . . 8 (g + ) = ( + g)
2016, 19eqeq12i 2050 . . . . . . 7 ((f + 𝑡) = (g + ) ↔ (𝑡 + f) = ( + g))
21 eqcom 2039 . . . . . . 7 ((𝑡 + f) = ( + g) ↔ ( + g) = (𝑡 + f))
2220, 21bitri 173 . . . . . 6 ((f + 𝑡) = (g + ) ↔ ( + g) = (𝑡 + f))
2312, 22syl6bb 185 . . . . 5 (((f 𝑆 g 𝑆) ( 𝑆 𝑡 𝑆)) → (⟨f, g, 𝑡⟩ ↔ ( + g) = (𝑡 + f)))
241ecopoveq 6137 . . . . . 6 ((( 𝑆 𝑡 𝑆) (f 𝑆 g 𝑆)) → (⟨, 𝑡f, g⟩ ↔ ( + g) = (𝑡 + f)))
2524ancoms 255 . . . . 5 (((f 𝑆 g 𝑆) ( 𝑆 𝑡 𝑆)) → (⟨, 𝑡f, g⟩ ↔ ( + g) = (𝑡 + f)))
2623, 25bitr4d 180 . . . 4 (((f 𝑆 g 𝑆) ( 𝑆 𝑡 𝑆)) → (⟨f, g, 𝑡⟩ ↔ ⟨, 𝑡f, g⟩))
275, 8, 11, 262optocl 4360 . . 3 ((A (𝑆 × 𝑆) B (𝑆 × 𝑆)) → (A BB A))
284, 27syl 14 . 2 (A B → (A BB A))
2928ibi 165 1 (A BB A)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   = wceq 1242  wex 1378   wcel 1390  cop 3370   class class class wbr 3755  {copab 3808   × cxp 4286  (class class class)co 5455
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-xp 4294  df-iota 4810  df-fv 4853  df-ov 5458
This theorem is referenced by:  ecopover  6140
  Copyright terms: Public domain W3C validator