Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr2i | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr2i.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
bitr2i | ⊢ (𝜒 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr2i.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 1, 2 | bitri 173 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3 | bicomi 123 | 1 ⊢ (𝜒 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: 3bitrri 196 3bitr2ri 198 3bitr4ri 202 nan 626 pm4.15 789 3or6 1218 sbal1yz 1877 2exsb 1885 moanim 1974 2eu4 1993 cvjust 2035 abbi 2151 sbc8g 2771 ss2rab 3016 unass 3100 unss 3117 undi 3185 difindiss 3191 disj 3268 unopab 3836 eqvinop 3980 pwexb 4206 dmun 4542 reldm0 4553 dmres 4632 imadmrn 4678 ssrnres 4763 dmsnm 4786 coundi 4822 coundir 4823 cnvpom 4860 xpcom 4864 fun11 4966 fununi 4967 funcnvuni 4968 isarep1 4985 fsn 5335 fconstfvm 5379 eufnfv 5389 acexmidlem2 5509 eloprabga 5591 funoprabg 5600 ralrnmpt2 5615 rexrnmpt2 5616 oprabrexex2 5757 dfer2 6107 euen1b 6283 xpsnen 6295 rexuz3 9588 |
Copyright terms: Public domain | W3C validator |