Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm4.15 | GIF version |
Description: Theorem *4.15 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
Ref | Expression |
---|---|
pm4.15 | ⊢ (((𝜑 ∧ 𝜓) → ¬ 𝜒) ↔ ((𝜓 ∧ 𝜒) → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2b 593 | . 2 ⊢ (((𝜓 ∧ 𝜒) → ¬ 𝜑) ↔ (𝜑 → ¬ (𝜓 ∧ 𝜒))) | |
2 | nan 626 | . 2 ⊢ ((𝜑 → ¬ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) → ¬ 𝜒)) | |
3 | 1, 2 | bitr2i 174 | 1 ⊢ (((𝜑 ∧ 𝜓) → ¬ 𝜒) ↔ ((𝜓 ∧ 𝜒) → ¬ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |