Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3nn0 | GIF version |
Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
3nn0 | ⊢ 3 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 8078 | . 2 ⊢ 3 ∈ ℕ | |
2 | 1 | nnnn0i 8189 | 1 ⊢ 3 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1393 3c3 7965 ℕ0cn0 8181 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-cnex 6975 ax-resscn 6976 ax-1re 6978 ax-addrcl 6981 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-br 3765 df-iota 4867 df-fv 4910 df-ov 5515 df-inn 7915 df-2 7973 df-3 7974 df-n0 8182 |
This theorem is referenced by: 7p4e11 8419 7p7e14 8422 8p4e12 8424 8p6e14 8426 9p4e13 8431 9p5e14 8432 4t4e16 8440 5t4e20 8442 6t4e24 8446 6t6e36 8448 7t4e28 8451 7t6e42 8453 8t4e32 8457 8t5e40 8458 9t4e36 8464 9t5e45 8465 9t7e63 8467 9t8e72 8468 4fvwrd4 8997 fldiv4p1lem1div2 9147 expnass 9357 binom3 9366 |
Copyright terms: Public domain | W3C validator |