![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3nn | GIF version |
Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
3nn | ⊢ 3 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 7754 | . 2 ⊢ 3 = (2 + 1) | |
2 | 2nn 7855 | . . 3 ⊢ 2 ∈ ℕ | |
3 | peano2nn 7707 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 7 | . 2 ⊢ (2 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2107 | 1 ⊢ 3 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1390 (class class class)co 5455 1c1 6712 + caddc 6714 ℕcn 7695 2c2 7744 3c3 7745 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-cnex 6774 ax-resscn 6775 ax-1re 6777 ax-addrcl 6780 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rex 2306 df-v 2553 df-un 2916 df-in 2918 df-ss 2925 df-sn 3373 df-pr 3374 df-op 3376 df-uni 3572 df-int 3607 df-br 3756 df-iota 4810 df-fv 4853 df-ov 5458 df-inn 7696 df-2 7753 df-3 7754 |
This theorem is referenced by: 4nn 7857 3nn0 7975 3z 8050 ige3m2fz 8683 |
Copyright terms: Public domain | W3C validator |