ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndrn GIF version

Theorem 2ndrn 5809
Description: The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
2ndrn ((Rel 𝑅𝐴𝑅) → (2nd𝐴) ∈ ran 𝑅)

Proof of Theorem 2ndrn
StepHypRef Expression
1 simpr 103 . 2 ((Rel 𝑅𝐴𝑅) → 𝐴𝑅)
2 1st2nd 5807 . . 3 ((Rel 𝑅𝐴𝑅) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
32, 1eqeltrrd 2115 . 2 ((Rel 𝑅𝐴𝑅) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝑅)
4 1stexg 5794 . . . 4 (𝐴𝑅 → (1st𝐴) ∈ V)
5 2ndexg 5795 . . . 4 (𝐴𝑅 → (2nd𝐴) ∈ V)
64, 5jca 290 . . 3 (𝐴𝑅 → ((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V))
7 opelrng 4566 . . . 4 (((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V ∧ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝑅) → (2nd𝐴) ∈ ran 𝑅)
873expa 1104 . . 3 ((((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V) ∧ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝑅) → (2nd𝐴) ∈ ran 𝑅)
96, 8sylan 267 . 2 ((𝐴𝑅 ∧ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝑅) → (2nd𝐴) ∈ ran 𝑅)
101, 3, 9syl2anc 391 1 ((Rel 𝑅𝐴𝑅) → (2nd𝐴) ∈ ran 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wcel 1393  Vcvv 2557  cop 3378  ran crn 4346  Rel wrel 4350  cfv 4902  1st c1st 5765  2nd c2nd 5766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fo 4908  df-fv 4910  df-1st 5767  df-2nd 5768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator