ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndexg Structured version   GIF version

Theorem 2ndexg 5734
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
2ndexg (A 𝑉 → (2ndA) V)

Proof of Theorem 2ndexg
StepHypRef Expression
1 elex 2560 . 2 (A 𝑉A V)
2 fo2nd 5724 . . . 4 2nd :V–onto→V
3 fofn 5049 . . . 4 (2nd :V–onto→V → 2nd Fn V)
42, 3ax-mp 7 . . 3 2nd Fn V
5 funfvex 5133 . . . 4 ((Fun 2nd A dom 2nd ) → (2ndA) V)
65funfni 4940 . . 3 ((2nd Fn V A V) → (2ndA) V)
74, 6mpan 400 . 2 (A V → (2ndA) V)
81, 7syl 14 1 (A 𝑉 → (2ndA) V)
Colors of variables: wff set class
Syntax hints:  wi 4   wcel 1390  Vcvv 2551   Fn wfn 4839  ontowfo 4842  cfv 4844  2nd c2nd 5705
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3865  ax-pow 3917  ax-pr 3934  ax-un 4135
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-sbc 2759  df-un 2916  df-in 2918  df-ss 2925  df-pw 3352  df-sn 3372  df-pr 3373  df-op 3375  df-uni 3571  df-br 3755  df-opab 3809  df-mpt 3810  df-id 4020  df-xp 4293  df-rel 4294  df-cnv 4295  df-co 4296  df-dm 4297  df-rn 4298  df-iota 4809  df-fun 4846  df-fn 4847  df-f 4848  df-fo 4850  df-fv 4852  df-2nd 5707
This theorem is referenced by:  elxp7  5736  xpopth  5741  eqop  5742  op1steq  5744  2nd1st  5745  2ndrn  5748  dfoprab3  5756  elopabi  5760  mpt2fvex  5768  dfmpt2  5783  cnvf1olem  5784
  Copyright terms: Public domain W3C validator