![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2nd0 | GIF version |
Description: The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
Ref | Expression |
---|---|
2nd0 | ⊢ (2nd ‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 3884 | . . 3 ⊢ ∅ ∈ V | |
2 | 2ndvalg 5770 | . . 3 ⊢ (∅ ∈ V → (2nd ‘∅) = ∪ ran {∅}) | |
3 | 1, 2 | ax-mp 7 | . 2 ⊢ (2nd ‘∅) = ∪ ran {∅} |
4 | dmsn0 4788 | . . . 4 ⊢ dom {∅} = ∅ | |
5 | dm0rn0 4552 | . . . 4 ⊢ (dom {∅} = ∅ ↔ ran {∅} = ∅) | |
6 | 4, 5 | mpbi 133 | . . 3 ⊢ ran {∅} = ∅ |
7 | 6 | unieqi 3590 | . 2 ⊢ ∪ ran {∅} = ∪ ∅ |
8 | uni0 3607 | . 2 ⊢ ∪ ∅ = ∅ | |
9 | 3, 7, 8 | 3eqtri 2064 | 1 ⊢ (2nd ‘∅) = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ∈ wcel 1393 Vcvv 2557 ∅c0 3224 {csn 3375 ∪ cuni 3580 dom cdm 4345 ran crn 4346 ‘cfv 4902 2nd c2nd 5766 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-iota 4867 df-fun 4904 df-fv 4910 df-2nd 5768 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |