Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmsn0 | GIF version |
Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.) |
Ref | Expression |
---|---|
dmsn0 | ⊢ dom {∅} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 4372 | . . . 4 ⊢ ¬ ∅ ∈ (V × V) | |
2 | dmsnm 4786 | . . . 4 ⊢ (∅ ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {∅}) | |
3 | 1, 2 | mtbi 595 | . . 3 ⊢ ¬ ∃𝑥 𝑥 ∈ dom {∅} |
4 | alnex 1388 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom {∅} ↔ ¬ ∃𝑥 𝑥 ∈ dom {∅}) | |
5 | 3, 4 | mpbir 134 | . 2 ⊢ ∀𝑥 ¬ 𝑥 ∈ dom {∅} |
6 | eq0 3239 | . 2 ⊢ (dom {∅} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {∅}) | |
7 | 5, 6 | mpbir 134 | 1 ⊢ dom {∅} = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∀wal 1241 = wceq 1243 ∃wex 1381 ∈ wcel 1393 Vcvv 2557 ∅c0 3224 {csn 3375 × cxp 4343 dom cdm 4345 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-dm 4355 |
This theorem is referenced by: cnvsn0 4789 1st0 5771 2nd0 5772 |
Copyright terms: Public domain | W3C validator |