Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstrd Structured version   Unicode version

Theorem sstrd 2949
 Description: Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.)
Hypotheses
Ref Expression
sstrd.1
sstrd.2
Assertion
Ref Expression
sstrd

Proof of Theorem sstrd
StepHypRef Expression
1 sstrd.1 . 2
2 sstrd.2 . 2
3 sstr 2947 . 2
41, 2, 3syl2anc 391 1
 Colors of variables: wff set class Syntax hints:   wi 4   wss 2911 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-in 2918  df-ss 2925 This theorem is referenced by:  syl5ss  2950  syl6ss  2951  ssdif2d  3076  tfisi  4253  funss  4863  fssxp  5001  fvmptssdm  5198  suppssfv  5650  suppssov1  5651  tposss  5802  tfrlem1  5864  tfrlemibfn  5883  ecinxp  6117
 Copyright terms: Public domain W3C validator