ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relopab Unicode version

Theorem relopab 4464
Description: A class of ordered pairs is a relation. (Contributed by NM, 8-Mar-1995.) (Unnecessary distinct variable restrictions were removed by Alan Sare, 9-Jul-2013.) (Proof shortened by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
relopab  |-  Rel  { <. x ,  y >.  |  ph }

Proof of Theorem relopab
StepHypRef Expression
1 eqid 2040 . 2  |-  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ph }
21relopabi 4463 1  |-  Rel  { <. x ,  y >.  |  ph }
Colors of variables: wff set class
Syntax hints:   {copab 3817   Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-opab 3819  df-xp 4351  df-rel 4352
This theorem is referenced by:  opabid2  4467  inopab  4468  difopab  4469  dfres2  4658  cnvopab  4726  funopab  4935  elopabi  5821  shftfn  9399
  Copyright terms: Public domain W3C validator