Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opabid2 | Unicode version |
Description: A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.) |
Ref | Expression |
---|---|
opabid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2560 | . . . 4 | |
2 | vex 2560 | . . . 4 | |
3 | opeq1 3549 | . . . . 5 | |
4 | 3 | eleq1d 2106 | . . . 4 |
5 | opeq2 3550 | . . . . 5 | |
6 | 5 | eleq1d 2106 | . . . 4 |
7 | 1, 2, 4, 6 | opelopab 4008 | . . 3 |
8 | 7 | gen2 1339 | . 2 |
9 | relopab 4464 | . . 3 | |
10 | eqrel 4429 | . . 3 | |
11 | 9, 10 | mpan 400 | . 2 |
12 | 8, 11 | mpbiri 157 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wal 1241 wceq 1243 wcel 1393 cop 3378 copab 3817 wrel 4350 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-opab 3819 df-xp 4351 df-rel 4352 |
This theorem is referenced by: opabbi2dv 4485 |
Copyright terms: Public domain | W3C validator |