ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcanl Unicode version

Theorem caucvgprlemcanl 6742
Description: Lemma for cauappcvgprlemladdrl 6755. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.)
Hypotheses
Ref Expression
caucvgprlemcanl.l  |-  ( ph  ->  L  e.  P. )
caucvgprlemcanl.s  |-  ( ph  ->  S  e.  Q. )
caucvgprlemcanl.r  |-  ( ph  ->  R  e.  Q. )
caucvgprlemcanl.q  |-  ( ph  ->  Q  e.  Q. )
Assertion
Ref Expression
caucvgprlemcanl  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
Distinct variable groups:    Q, l, u    R, l, u    S, l, u
Allowed substitution hints:    ph( u, l)    L( u, l)

Proof of Theorem caucvgprlemcanl
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltaprg 6717 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
21adantl 262 . . 3  |-  ( (
ph  /\  ( f  e.  P.  /\  g  e. 
P.  /\  h  e.  P. ) )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
3 caucvgprlemcanl.r . . . 4  |-  ( ph  ->  R  e.  Q. )
4 nqprlu 6645 . . . 4  |-  ( R  e.  Q.  ->  <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  e.  P. )
53, 4syl 14 . . 3  |-  ( ph  -> 
<. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  e.  P. )
6 caucvgprlemcanl.l . . . 4  |-  ( ph  ->  L  e.  P. )
7 caucvgprlemcanl.s . . . . 5  |-  ( ph  ->  S  e.  Q. )
8 nqprlu 6645 . . . . 5  |-  ( S  e.  Q.  ->  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  e.  P. )
97, 8syl 14 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )
10 addclpr 6635 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  e.  P. )
116, 9, 10syl2anc 391 . . 3  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P. )
12 caucvgprlemcanl.q . . . 4  |-  ( ph  ->  Q  e.  Q. )
13 nqprlu 6645 . . . 4  |-  ( Q  e.  Q.  ->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  e.  P. )
1412, 13syl 14 . . 3  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )
15 addcomprg 6676 . . . 4  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
1615adantl 262 . . 3  |-  ( (
ph  /\  ( f  e.  P.  /\  g  e. 
P. ) )  -> 
( f  +P.  g
)  =  ( g  +P.  f ) )
172, 5, 11, 14, 16caovord2d 5670 . 2  |-  ( ph  ->  ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  <->  (
<. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
18 nqprl 6649 . . 3  |-  ( ( R  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P. )  ->  ( R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  <->  <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
193, 11, 18syl2anc 391 . 2  |-  ( ph  ->  ( R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  <->  <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
20 addnqpr 6659 . . . . 5  |-  ( ( R  e.  Q.  /\  Q  e.  Q. )  -> 
<. { l  |  l 
<Q  ( R  +Q  Q
) } ,  {
u  |  ( R  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
213, 12, 20syl2anc 391 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  ( R  +Q  Q
) } ,  {
u  |  ( R  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
22 addnqpr 6659 . . . . . 6  |-  ( ( S  e.  Q.  /\  Q  e.  Q. )  -> 
<. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
237, 12, 22syl2anc 391 . . . . 5  |-  ( ph  -> 
<. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
2423oveq2d 5528 . . . 4  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. )  =  ( L  +P.  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) )
2521, 24breq12d 3777 . . 3  |-  ( ph  ->  ( <. { l  |  l  <Q  ( R  +Q  Q ) } ,  { u  |  ( R  +Q  Q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. )  <->  ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( L  +P.  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
26 addclnq 6473 . . . . 5  |-  ( ( R  e.  Q.  /\  Q  e.  Q. )  ->  ( R  +Q  Q
)  e.  Q. )
273, 12, 26syl2anc 391 . . . 4  |-  ( ph  ->  ( R  +Q  Q
)  e.  Q. )
28 addclnq 6473 . . . . . . 7  |-  ( ( S  e.  Q.  /\  Q  e.  Q. )  ->  ( S  +Q  Q
)  e.  Q. )
297, 12, 28syl2anc 391 . . . . . 6  |-  ( ph  ->  ( S  +Q  Q
)  e.  Q. )
30 nqprlu 6645 . . . . . 6  |-  ( ( S  +Q  Q )  e.  Q.  ->  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q
)  <Q  u } >.  e. 
P. )
3129, 30syl 14 . . . . 5  |-  ( ph  -> 
<. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  e.  P. )
32 addclpr 6635 . . . . 5  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  ( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. )  e.  P. )
336, 31, 32syl2anc 391 . . . 4  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. )  e.  P. )
34 nqprl 6649 . . . 4  |-  ( ( ( R  +Q  Q
)  e.  Q.  /\  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q
)  <Q  u } >. )  e.  P. )  -> 
( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( R  +Q  Q ) } ,  { u  |  ( R  +Q  Q
)  <Q  u } >.  <P 
( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. ) ) )
3527, 33, 34syl2anc 391 . . 3  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  <. { l  |  l  <Q  ( R  +Q  Q ) } ,  { u  |  ( R  +Q  Q
)  <Q  u } >.  <P 
( L  +P.  <. { l  |  l  <Q 
( S  +Q  Q
) } ,  {
u  |  ( S  +Q  Q )  <Q  u } >. ) ) )
36 addassprg 6677 . . . . 5  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )  ->  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  =  ( L  +P.  ( <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
376, 9, 14, 36syl3anc 1135 . . . 4  |-  ( ph  ->  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  =  ( L  +P.  ( <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
3837breq2d 3776 . . 3  |-  ( ph  ->  ( ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <->  (
<. { l  |  l 
<Q  R } ,  {
u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( L  +P.  ( <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ) )
3925, 35, 383bitr4d 209 . 2  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  ( <. { l  |  l  <Q  R } ,  { u  |  R  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
4017, 19, 393bitr4rd 210 1  |-  ( ph  ->  ( ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q )  <Q  u } >. ) )  <->  R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   {cab 2026   <.cop 3378   class class class wbr 3764   ` cfv 4902  (class class class)co 5512   1stc1st 5765   Q.cnq 6378    +Q cplq 6380    <Q cltq 6383   P.cnp 6389    +P. cpp 6391    <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-iplp 6566  df-iltp 6568
This theorem is referenced by:  cauappcvgprlemladdrl  6755  caucvgprlemladdrl  6776
  Copyright terms: Public domain W3C validator