![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suc0 | GIF version |
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
Ref | Expression |
---|---|
suc0 | ⊢ suc ∅ = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 4108 | . 2 ⊢ suc ∅ = (∅ ∪ {∅}) | |
2 | uncom 3087 | . 2 ⊢ (∅ ∪ {∅}) = ({∅} ∪ ∅) | |
3 | un0 3251 | . 2 ⊢ ({∅} ∪ ∅) = {∅} | |
4 | 1, 2, 3 | 3eqtri 2064 | 1 ⊢ suc ∅ = {∅} |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ∪ cun 2915 ∅c0 3224 {csn 3375 suc csuc 4102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-dif 2920 df-un 2922 df-nul 3225 df-suc 4108 |
This theorem is referenced by: ordtriexmidlem 4245 ordtri2orexmid 4248 2ordpr 4249 onsucsssucexmid 4252 onsucelsucexmid 4255 ordsoexmid 4286 ordtri2or2exmid 4296 nnregexmid 4342 tfr0 5937 df1o2 6013 |
Copyright terms: Public domain | W3C validator |