ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0 Structured version   GIF version

Theorem un0 3245
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
un0 (A ∪ ∅) = A

Proof of Theorem un0
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 noel 3222 . . . 4 ¬ x
21biorfi 664 . . 3 (x A ↔ (x A x ∅))
32bicomi 123 . 2 ((x A x ∅) ↔ x A)
43uneqri 3079 1 (A ∪ ∅) = A
Colors of variables: wff set class
Syntax hints:   wo 628   = wceq 1242   wcel 1390  cun 2909  c0 3218
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-dif 2914  df-un 2916  df-nul 3219
This theorem is referenced by:  un00  3257  disjssun  3279  difun2  3296  difdifdirss  3301  disjpr2  3425  prprc1  3469  diftpsn3  3496  iununir  3729  suc0  4114  sucprc  4115  fvun1  5182  fmptpr  5298  fvunsng  5300  fvsnun1  5303  fvsnun2  5304  fsnunfv  5306  fsnunres  5307  rdg0  5914  omv2  5984  fzsuc2  8671  fseq1p1m1  8686
  Copyright terms: Public domain W3C validator