Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovelimab Structured version   GIF version

Theorem ovelimab 5593
 Description: Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
ovelimab ((𝐹 Fn A (B × 𝐶) ⊆ A) → (𝐷 (𝐹 “ (B × 𝐶)) ↔ x B y 𝐶 𝐷 = (x𝐹y)))
Distinct variable groups:   x,y,A   x,B,y   x,𝐶,y   x,𝐷,y   x,𝐹,y

Proof of Theorem ovelimab
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 fvelimab 5172 . 2 ((𝐹 Fn A (B × 𝐶) ⊆ A) → (𝐷 (𝐹 “ (B × 𝐶)) ↔ z (B × 𝐶)(𝐹z) = 𝐷))
2 fveq2 5121 . . . . . 6 (z = ⟨x, y⟩ → (𝐹z) = (𝐹‘⟨x, y⟩))
3 df-ov 5458 . . . . . 6 (x𝐹y) = (𝐹‘⟨x, y⟩)
42, 3syl6eqr 2087 . . . . 5 (z = ⟨x, y⟩ → (𝐹z) = (x𝐹y))
54eqeq1d 2045 . . . 4 (z = ⟨x, y⟩ → ((𝐹z) = 𝐷 ↔ (x𝐹y) = 𝐷))
6 eqcom 2039 . . . 4 ((x𝐹y) = 𝐷𝐷 = (x𝐹y))
75, 6syl6bb 185 . . 3 (z = ⟨x, y⟩ → ((𝐹z) = 𝐷𝐷 = (x𝐹y)))
87rexxp 4423 . 2 (z (B × 𝐶)(𝐹z) = 𝐷x B y 𝐶 𝐷 = (x𝐹y))
91, 8syl6bb 185 1 ((𝐹 Fn A (B × 𝐶) ⊆ A) → (𝐷 (𝐹 “ (B × 𝐶)) ↔ x B y 𝐶 𝐷 = (x𝐹y)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   = wceq 1242   ∈ wcel 1390  ∃wrex 2301   ⊆ wss 2911  ⟨cop 3370   × cxp 4286   “ cima 4291   Fn wfn 4840  ‘cfv 4845  (class class class)co 5455 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935 This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-sbc 2759  df-csb 2847  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-iun 3650  df-br 3756  df-opab 3810  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-fv 4853  df-ov 5458 This theorem is referenced by:  dfz2  8089  elq  8333
 Copyright terms: Public domain W3C validator