ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnniniseg2 Structured version   GIF version

Theorem fnniniseg2 5233
Description: Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fnniniseg2 (𝐹 Fn A → (𝐹 “ (V ∖ {B})) = {x A ∣ (𝐹x) ≠ B})
Distinct variable groups:   x,A   x,𝐹   x,B

Proof of Theorem fnniniseg2
StepHypRef Expression
1 fncnvima2 5231 . 2 (𝐹 Fn A → (𝐹 “ (V ∖ {B})) = {x A ∣ (𝐹x) (V ∖ {B})})
2 funfvex 5135 . . . . . 6 ((Fun 𝐹 x dom 𝐹) → (𝐹x) V)
32funfni 4942 . . . . 5 ((𝐹 Fn A x A) → (𝐹x) V)
43biantrurd 289 . . . 4 ((𝐹 Fn A x A) → ((𝐹x) ≠ B ↔ ((𝐹x) V (𝐹x) ≠ B)))
5 eldifsn 3486 . . . 4 ((𝐹x) (V ∖ {B}) ↔ ((𝐹x) V (𝐹x) ≠ B))
64, 5syl6rbbr 188 . . 3 ((𝐹 Fn A x A) → ((𝐹x) (V ∖ {B}) ↔ (𝐹x) ≠ B))
76rabbidva 2542 . 2 (𝐹 Fn A → {x A ∣ (𝐹x) (V ∖ {B})} = {x A ∣ (𝐹x) ≠ B})
81, 7eqtrd 2069 1 (𝐹 Fn A → (𝐹 “ (V ∖ {B})) = {x A ∣ (𝐹x) ≠ B})
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   = wceq 1242   wcel 1390  wne 2201  {crab 2304  Vcvv 2551  cdif 2908  {csn 3367  ccnv 4287  cima 4291   Fn wfn 4840  cfv 4845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ne 2203  df-ral 2305  df-rex 2306  df-rab 2309  df-v 2553  df-sbc 2759  df-dif 2914  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-fv 4853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator