![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexsupp | GIF version |
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
rexsupp | ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreima 5286 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (V ∖ {𝑍})))) | |
2 | funfvex 5192 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
3 | 2 | funfni 4999 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
4 | 3 | biantrurd 289 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≠ 𝑍 ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝑍))) |
5 | eldifsn 3495 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ (V ∖ {𝑍}) ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝑍)) | |
6 | 4, 5 | syl6rbbr 188 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (V ∖ {𝑍}) ↔ (𝐹‘𝑥) ≠ 𝑍)) |
7 | 6 | pm5.32da 425 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (V ∖ {𝑍})) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍))) |
8 | 1, 7 | bitrd 177 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍))) |
9 | 8 | anbi1d 438 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑))) |
10 | anass 381 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) | |
11 | 9, 10 | syl6bb 185 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑)))) |
12 | 11 | rexbidv2 2329 | 1 ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 ∈ wcel 1393 ≠ wne 2204 ∃wrex 2307 Vcvv 2557 ∖ cdif 2914 {csn 3375 ◡ccnv 4344 “ cima 4348 Fn wfn 4897 ‘cfv 4902 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-fv 4910 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |