ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnimapr GIF version

Theorem fnimapr 5233
Description: The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011.)
Assertion
Ref Expression
fnimapr ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹𝐵), (𝐹𝐶)})

Proof of Theorem fnimapr
StepHypRef Expression
1 fnsnfv 5232 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))
213adant3 924 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))
3 fnsnfv 5232 . . . . 5 ((𝐹 Fn 𝐴𝐶𝐴) → {(𝐹𝐶)} = (𝐹 “ {𝐶}))
433adant2 923 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → {(𝐹𝐶)} = (𝐹 “ {𝐶}))
52, 4uneq12d 3098 . . 3 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → ({(𝐹𝐵)} ∪ {(𝐹𝐶)}) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})))
65eqcomd 2045 . 2 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) = ({(𝐹𝐵)} ∪ {(𝐹𝐶)}))
7 df-pr 3382 . . . 4 {𝐵, 𝐶} = ({𝐵} ∪ {𝐶})
87imaeq2i 4666 . . 3 (𝐹 “ {𝐵, 𝐶}) = (𝐹 “ ({𝐵} ∪ {𝐶}))
9 imaundi 4736 . . 3 (𝐹 “ ({𝐵} ∪ {𝐶})) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶}))
108, 9eqtri 2060 . 2 (𝐹 “ {𝐵, 𝐶}) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶}))
11 df-pr 3382 . 2 {(𝐹𝐵), (𝐹𝐶)} = ({(𝐹𝐵)} ∪ {(𝐹𝐶)})
126, 10, 113eqtr4g 2097 1 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹𝐵), (𝐹𝐶)})
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 885   = wceq 1243  wcel 1393  cun 2915  {csn 3375  {cpr 3376  cima 4348   Fn wfn 4897  cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910
This theorem is referenced by:  fvinim0ffz  9096
  Copyright terms: Public domain W3C validator