Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqop2 | GIF version |
Description: Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.) |
Ref | Expression |
---|---|
eqop2.1 | ⊢ 𝐵 ∈ V |
eqop2.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
eqop2 | ⊢ (𝐴 = 〈𝐵, 𝐶〉 ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqop2.1 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | eqop2.2 | . . . 4 ⊢ 𝐶 ∈ V | |
3 | 1, 2 | opelvv 4390 | . . 3 ⊢ 〈𝐵, 𝐶〉 ∈ (V × V) |
4 | eleq1 2100 | . . 3 ⊢ (𝐴 = 〈𝐵, 𝐶〉 → (𝐴 ∈ (V × V) ↔ 〈𝐵, 𝐶〉 ∈ (V × V))) | |
5 | 3, 4 | mpbiri 157 | . 2 ⊢ (𝐴 = 〈𝐵, 𝐶〉 → 𝐴 ∈ (V × V)) |
6 | eqop 5803 | . 2 ⊢ (𝐴 ∈ (V × V) → (𝐴 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) | |
7 | 5, 6 | biadan2 429 | 1 ⊢ (𝐴 = 〈𝐵, 𝐶〉 ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ↔ wb 98 = wceq 1243 ∈ wcel 1393 Vcvv 2557 〈cop 3378 × cxp 4343 ‘cfv 4902 1st c1st 5765 2nd c2nd 5766 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-sbc 2765 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-fo 4908 df-fv 4910 df-1st 5767 df-2nd 5768 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |