ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuci Structured version   GIF version

Theorem elsuci 4089
Description: Membership in a successor. This one-way implication does not require that either A or B be sets. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elsuci (A suc B → (A B A = B))

Proof of Theorem elsuci
StepHypRef Expression
1 df-suc 4057 . . . 4 suc B = (B ∪ {B})
21eleq2i 2086 . . 3 (A suc BA (B ∪ {B}))
3 elun 3061 . . 3 (A (B ∪ {B}) ↔ (A B A {B}))
42, 3bitri 173 . 2 (A suc B ↔ (A B A {B}))
5 elsni 3374 . . 3 (A {B} → A = B)
65orim2i 665 . 2 ((A B A {B}) → (A B A = B))
74, 6sylbi 114 1 (A suc B → (A B A = B))
Colors of variables: wff set class
Syntax hints:  wi 4   wo 616   = wceq 1228   wcel 1374  cun 2892  {csn 3350  suc csuc 4051
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-v 2537  df-un 2899  df-sn 3356  df-suc 4057
This theorem is referenced by:  suctr  4108  trsucss  4110  onsucelsucexmid  4199  ordsoexmid  4224  ordsuc  4225  ordpwsucexmid  4230  nnsucelsuc  5985  nntri3or  5987  nnmordi  6000  nnaordex  6011
  Copyright terms: Public domain W3C validator