ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p1times GIF version

Theorem 1p1times 7145
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
1p1times (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem 1p1times
StepHypRef Expression
1 ax-1cn 6975 . . . 4 1 ∈ ℂ
21a1i 9 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℂ)
3 id 19 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
42, 2, 3adddird 7050 . 2 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = ((1 · 𝐴) + (1 · 𝐴)))
5 mulid2 7023 . . 3 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
65, 5oveq12d 5530 . 2 (𝐴 ∈ ℂ → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴))
74, 6eqtrd 2072 1 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  wcel 1393  (class class class)co 5512  cc 6885  1c1 6888   + caddc 6890   · cmul 6892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-resscn 6974  ax-1cn 6975  ax-icn 6977  ax-addcl 6978  ax-mulcl 6980  ax-mulcom 6983  ax-mulass 6985  ax-distr 6986  ax-1rid 6989  ax-cnre 6993
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515
This theorem is referenced by:  eqneg  7706  2times  8036
  Copyright terms: Public domain W3C validator