ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2cn Structured version   GIF version

Theorem peano2cn 6905
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4261. (Contributed by NM, 17-Aug-2005.)
Assertion
Ref Expression
peano2cn (A ℂ → (A + 1) ℂ)

Proof of Theorem peano2cn
StepHypRef Expression
1 ax-1cn 6736 . 2 1
2 addcl 6764 . 2 ((A 1 ℂ) → (A + 1) ℂ)
31, 2mpan2 401 1 (A ℂ → (A + 1) ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4   wcel 1390  (class class class)co 5455  cc 6669  1c1 6672   + caddc 6674
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 101  ax-1cn 6736  ax-addcl 6739
This theorem is referenced by:  nneo  8077  zeo  8079  zeo2  8080  zesq  8980
  Copyright terms: Public domain W3C validator