ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsspr1 Unicode version

Theorem snsspr1 3512
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
snsspr1  |-  { A }  C_  { A ,  B }

Proof of Theorem snsspr1
StepHypRef Expression
1 ssun1 3106 . 2  |-  { A }  C_  ( { A }  u.  { B } )
2 df-pr 3382 . 2  |-  { A ,  B }  =  ( { A }  u.  { B } )
31, 2sseqtr4i 2978 1  |-  { A }  C_  { A ,  B }
Colors of variables: wff set class
Syntax hints:    u. cun 2915    C_ wss 2917   {csn 3375   {cpr 3376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pr 3382
This theorem is referenced by:  snsstp1  3514  ssprr  3527  uniop  3992  op1stb  4209  op1stbg  4210  ltrelxr  7080
  Copyright terms: Public domain W3C validator