ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem3 Unicode version

Theorem prarloclem3 6576
Description: Contracting an interval which straddles a Dedekind cut. Lemma for prarloc 6582. (Contributed by Jim Kingdon, 27-Oct-2019.)
Assertion
Ref Expression
prarloclem3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. )  /\  E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
Distinct variable groups:    A, j, y   
j, L, y    P, j, y    U, j, y   
y, X
Allowed substitution hint:    X( j)

Proof of Theorem prarloclem3
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 483 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. ) )  ->  X  e.  om )
2 simpll 481 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. ) )  ->  <. L ,  U >.  e. 
P. )
3 simplr 482 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. ) )  ->  A  e.  L )
4 simprr 484 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. ) )  ->  P  e.  Q. )
5 oveq2 5507 . . . . . . . . . . . . . 14  |-  ( x  =  X  ->  (
( y  +o  2o )  +o  x )  =  ( ( y  +o  2o )  +o  X
) )
65opeq1d 3552 . . . . . . . . . . . . 13  |-  ( x  =  X  ->  <. (
( y  +o  2o )  +o  x ) ,  1o >.  =  <. ( ( y  +o  2o )  +o  X ) ,  1o >. )
76eceq1d 6129 . . . . . . . . . . . 12  |-  ( x  =  X  ->  [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  )
87oveq1d 5514 . . . . . . . . . . 11  |-  ( x  =  X  ->  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
)  =  ( [
<. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  .Q  P ) )
98oveq2d 5515 . . . . . . . . . 10  |-  ( x  =  X  ->  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) ) )
109eleq1d 2106 . . . . . . . . 9  |-  ( x  =  X  ->  (
( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U  <->  ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
1110anbi2d 437 . . . . . . . 8  |-  ( x  =  X  ->  (
( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
1211rexbidv 2324 . . . . . . 7  |-  ( x  =  X  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
1312imbi1d 220 . . . . . 6  |-  ( x  =  X  ->  (
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  <->  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
1413imbi2d 219 . . . . 5  |-  ( x  =  X  ->  (
( ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e.  Q. )  ->  ( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )  <->  ( ( <. L ,  U >.  e. 
P.  /\  A  e.  L  /\  P  e.  Q. )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) ) )
15 oveq2 5507 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  ( ( y  +o  2o )  +o  x )  =  ( ( y  +o  2o )  +o  (/) ) )
1615opeq1d 3552 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  <. (
( y  +o  2o )  +o  x ) ,  1o >.  =  <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. )
1716eceq1d 6129 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  )
1817oveq1d 5514 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( [
<. ( ( y  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P
) )
1918oveq2d 5515 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) ) )
2019eleq1d 2106 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U  <->  ( A  +Q  ( [ <. (
( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
2120anbi2d 437 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
2221rexbidv 2324 . . . . . . 7  |-  ( x  =  (/)  ->  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
2322imbi1d 220 . . . . . 6  |-  ( x  =  (/)  ->  ( ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  <->  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
24 oveq2 5507 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( y  +o  2o )  +o  x )  =  ( ( y  +o  2o )  +o  z
) )
2524opeq1d 3552 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  <. (
( y  +o  2o )  +o  x ) ,  1o >.  =  <. ( ( y  +o  2o )  +o  z ) ,  1o >. )
2625eceq1d 6129 . . . . . . . . . . . 12  |-  ( x  =  z  ->  [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  )
2726oveq1d 5514 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
)  =  ( [
<. ( ( y  +o  2o )  +o  z
) ,  1o >. ]  ~Q  .Q  P ) )
2827oveq2d 5515 . . . . . . . . . 10  |-  ( x  =  z  ->  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) ) )
2928eleq1d 2106 . . . . . . . . 9  |-  ( x  =  z  ->  (
( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U  <->  ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  z
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
3029anbi2d 437 . . . . . . . 8  |-  ( x  =  z  ->  (
( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
3130rexbidv 2324 . . . . . . 7  |-  ( x  =  z  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
3231imbi1d 220 . . . . . 6  |-  ( x  =  z  ->  (
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  <->  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
33 oveq2 5507 . . . . . . . . . . . . . 14  |-  ( x  =  suc  z  -> 
( ( y  +o  2o )  +o  x
)  =  ( ( y  +o  2o )  +o  suc  z ) )
3433opeq1d 3552 . . . . . . . . . . . . 13  |-  ( x  =  suc  z  ->  <. ( ( y  +o  2o )  +o  x
) ,  1o >.  = 
<. ( ( y  +o  2o )  +o  suc  z ) ,  1o >. )
3534eceq1d 6129 . . . . . . . . . . . 12  |-  ( x  =  suc  z  ->  [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. ( ( y  +o  2o )  +o  suc  z ) ,  1o >. ]  ~Q  )
3635oveq1d 5514 . . . . . . . . . . 11  |-  ( x  =  suc  z  -> 
( [ <. (
( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )
3736oveq2d 5515 . . . . . . . . . 10  |-  ( x  =  suc  z  -> 
( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  =  ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  suc  z ) ,  1o >. ]  ~Q  .Q  P
) ) )
3837eleq1d 2106 . . . . . . . . 9  |-  ( x  =  suc  z  -> 
( ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U  <->  ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  suc  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
3938anbi2d 437 . . . . . . . 8  |-  ( x  =  suc  z  -> 
( ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
4039rexbidv 2324 . . . . . . 7  |-  ( x  =  suc  z  -> 
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
4140imbi1d 220 . . . . . 6  |-  ( x  =  suc  z  -> 
( ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  <->  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
42 2onn 6081 . . . . . . . . . . . . . . . . 17  |-  2o  e.  om
43 nnacl 6046 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  om  /\  2o  e.  om )  -> 
( y  +o  2o )  e.  om )
44 nna0 6040 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  +o  2o )  e.  om  ->  (
( y  +o  2o )  +o  (/) )  =  ( y  +o  2o ) )
4543, 44syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  om  /\  2o  e.  om )  -> 
( ( y  +o  2o )  +o  (/) )  =  ( y  +o  2o ) )
4642, 45mpan2 401 . . . . . . . . . . . . . . . 16  |-  ( y  e.  om  ->  (
( y  +o  2o )  +o  (/) )  =  ( y  +o  2o ) )
4746opeq1d 3552 . . . . . . . . . . . . . . 15  |-  ( y  e.  om  ->  <. (
( y  +o  2o )  +o  (/) ) ,  1o >.  =  <. ( y  +o  2o ) ,  1o >. )
4847eceq1d 6129 . . . . . . . . . . . . . 14  |-  ( y  e.  om  ->  [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  =  [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  )
4948oveq1d 5514 . . . . . . . . . . . . 13  |-  ( y  e.  om  ->  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) )
5049oveq2d 5515 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P
) )  =  ( A  +Q  ( [
<. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) ) )
5150eleq1d 2106 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U  <->  ( A  +Q  ( [ <. (
y  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
5251anbi2d 437 . . . . . . . . . 10  |-  ( y  e.  om  ->  (
( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  <-> 
( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
5352rexbiia 2336 . . . . . . . . 9  |-  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  <->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
54 opeq1 3546 . . . . . . . . . . . . . . 15  |-  ( y  =  j  ->  <. y ,  1o >.  =  <. j ,  1o >. )
5554eceq1d 6129 . . . . . . . . . . . . . 14  |-  ( y  =  j  ->  [ <. y ,  1o >. ] ~Q0  =  [ <. j ,  1o >. ] ~Q0  )
5655oveq1d 5514 . . . . . . . . . . . . 13  |-  ( y  =  j  ->  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )  =  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )
5756oveq2d 5515 . . . . . . . . . . . 12  |-  ( y  =  j  ->  ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  =  ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
) )
5857eleq1d 2106 . . . . . . . . . . 11  |-  ( y  =  j  ->  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  <->  ( A +Q0  ( [
<. j ,  1o >. ] ~Q0 ·Q0 
P ) )  e.  L ) )
59 oveq1 5506 . . . . . . . . . . . . . . . 16  |-  ( y  =  j  ->  (
y  +o  2o )  =  ( j  +o  2o ) )
6059opeq1d 3552 . . . . . . . . . . . . . . 15  |-  ( y  =  j  ->  <. (
y  +o  2o ) ,  1o >.  =  <. ( j  +o  2o ) ,  1o >. )
6160eceq1d 6129 . . . . . . . . . . . . . 14  |-  ( y  =  j  ->  [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  =  [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  )
6261oveq1d 5514 . . . . . . . . . . . . 13  |-  ( y  =  j  ->  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
)  =  ( [
<. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) )
6362oveq2d 5515 . . . . . . . . . . . 12  |-  ( y  =  j  ->  ( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) ) )
6463eleq1d 2106 . . . . . . . . . . 11  |-  ( y  =  j  ->  (
( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U  <->  ( A  +Q  ( [
<. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
6558, 64anbi12d 442 . . . . . . . . . 10  |-  ( y  =  j  ->  (
( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
6665cbvrexv 2531 . . . . . . . . 9  |-  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( y  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
6753, 66bitri 173 . . . . . . . 8  |-  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  <->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
6867biimpi 113 . . . . . . 7  |-  ( E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
6968a1i 9 . . . . . 6  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  e.  L  /\  P  e.  Q. )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  (/) ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
70 prarloclem3step 6575 . . . . . . . . 9  |-  ( ( ( z  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
7170ex 108 . . . . . . . 8  |-  ( ( z  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  -> 
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
7271imim1d 69 . . . . . . 7  |-  ( ( z  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  -> 
( ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
7372ex 108 . . . . . 6  |-  ( z  e.  om  ->  (
( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. )  ->  (
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  z ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o 
suc  z ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) ) )
7423, 32, 41, 69, 73finds2 4311 . . . . 5  |-  ( x  e.  om  ->  (
( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
7514, 74vtoclga 2616 . . . 4  |-  ( X  e.  om  ->  (
( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. )  ->  ( E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) ) )
7675imp 115 . . 3  |-  ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  -> 
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
771, 2, 3, 4, 76syl13anc 1137 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. ) )  -> 
( E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
78773impia 1101 1  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( X  e.  om  /\  P  e.  Q. )  /\  E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )  ->  E. j  e.  om  ( ( A +Q0  ( [ <. j ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( j  +o  2o ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885    = wceq 1243    e. wcel 1393   E.wrex 2304   (/)c0 3221   <.cop 3375   suc csuc 4098   omcom 4300  (class class class)co 5499   1oc1o 5981   2oc2o 5982    +o coa 5985   [cec 6091    ~Q ceq 6358   Q.cnq 6359    +Q cplq 6361    .Q cmq 6362   ~Q0 ceq0 6365   +Q0 cplq0 6368   ·Q0 cmq0 6369   P.cnp 6370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3869  ax-sep 3872  ax-nul 3880  ax-pow 3924  ax-pr 3941  ax-un 4166  ax-setind 4256  ax-iinf 4298
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2308  df-rex 2309  df-reu 2310  df-rab 2312  df-v 2556  df-sbc 2762  df-csb 2850  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-nul 3222  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3578  df-int 3613  df-iun 3656  df-br 3762  df-opab 3816  df-mpt 3817  df-tr 3852  df-eprel 4023  df-id 4027  df-iord 4099  df-on 4101  df-suc 4104  df-iom 4301  df-xp 4338  df-rel 4339  df-cnv 4340  df-co 4341  df-dm 4342  df-rn 4343  df-res 4344  df-ima 4345  df-iota 4854  df-fun 4891  df-fn 4892  df-f 4893  df-f1 4894  df-fo 4895  df-f1o 4896  df-fv 4897  df-ov 5502  df-oprab 5503  df-mpt2 5504  df-1st 5754  df-2nd 5755  df-recs 5907  df-irdg 5944  df-1o 5988  df-2o 5989  df-oadd 5992  df-omul 5993  df-er 6093  df-ec 6095  df-qs 6099  df-ni 6383  df-pli 6384  df-mi 6385  df-lti 6386  df-plpq 6423  df-mpq 6424  df-enq 6426  df-nqqs 6427  df-plqqs 6428  df-mqqs 6429  df-ltnqqs 6432  df-enq0 6503  df-nq0 6504  df-plq0 6506  df-mq0 6507  df-inp 6545
This theorem is referenced by:  prarloclem4  6577
  Copyright terms: Public domain W3C validator