ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem3 GIF version

Theorem prarloclem3 6595
Description: Contracting an interval which straddles a Dedekind cut. Lemma for prarloc 6601. (Contributed by Jim Kingdon, 27-Oct-2019.)
Assertion
Ref Expression
prarloclem3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
Distinct variable groups:   𝐴,𝑗,𝑦   𝑗,𝐿,𝑦   𝑃,𝑗,𝑦   𝑈,𝑗,𝑦   𝑦,𝑋
Allowed substitution hint:   𝑋(𝑗)

Proof of Theorem prarloclem3
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 483 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → 𝑋 ∈ ω)
2 simpll 481 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → ⟨𝐿, 𝑈⟩ ∈ P)
3 simplr 482 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → 𝐴𝐿)
4 simprr 484 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → 𝑃Q)
5 oveq2 5520 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((𝑦 +𝑜 2𝑜) +𝑜 𝑥) = ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
65opeq1d 3555 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩ = ⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩)
76eceq1d 6142 . . . . . . . . . . . 12 (𝑥 = 𝑋 → [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q = [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q )
87oveq1d 5527 . . . . . . . . . . 11 (𝑥 = 𝑋 → ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃))
98oveq2d 5528 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)))
109eleq1d 2106 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
1110anbi2d 437 . . . . . . . 8 (𝑥 = 𝑋 → (((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
1211rexbidv 2327 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
1312imbi1d 220 . . . . . 6 (𝑥 = 𝑋 → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) ↔ (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
1413imbi2d 219 . . . . 5 (𝑥 = 𝑋 → (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))))
15 oveq2 5520 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝑦 +𝑜 2𝑜) +𝑜 𝑥) = ((𝑦 +𝑜 2𝑜) +𝑜 ∅))
1615opeq1d 3555 . . . . . . . . . . . . 13 (𝑥 = ∅ → ⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩ = ⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩)
1716eceq1d 6142 . . . . . . . . . . . 12 (𝑥 = ∅ → [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q = [⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q )
1817oveq1d 5527 . . . . . . . . . . 11 (𝑥 = ∅ → ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃))
1918oveq2d 5528 . . . . . . . . . 10 (𝑥 = ∅ → (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)))
2019eleq1d 2106 . . . . . . . . 9 (𝑥 = ∅ → ((𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
2120anbi2d 437 . . . . . . . 8 (𝑥 = ∅ → (((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
2221rexbidv 2327 . . . . . . 7 (𝑥 = ∅ → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
2322imbi1d 220 . . . . . 6 (𝑥 = ∅ → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) ↔ (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
24 oveq2 5520 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑦 +𝑜 2𝑜) +𝑜 𝑥) = ((𝑦 +𝑜 2𝑜) +𝑜 𝑧))
2524opeq1d 3555 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩ = ⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩)
2625eceq1d 6142 . . . . . . . . . . . 12 (𝑥 = 𝑧 → [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q = [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q )
2726oveq1d 5527 . . . . . . . . . . 11 (𝑥 = 𝑧 → ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃))
2827oveq2d 5528 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)))
2928eleq1d 2106 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
3029anbi2d 437 . . . . . . . 8 (𝑥 = 𝑧 → (((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
3130rexbidv 2327 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
3231imbi1d 220 . . . . . 6 (𝑥 = 𝑧 → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) ↔ (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
33 oveq2 5520 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑧 → ((𝑦 +𝑜 2𝑜) +𝑜 𝑥) = ((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧))
3433opeq1d 3555 . . . . . . . . . . . . 13 (𝑥 = suc 𝑧 → ⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩ = ⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩)
3534eceq1d 6142 . . . . . . . . . . . 12 (𝑥 = suc 𝑧 → [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q = [⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q )
3635oveq1d 5527 . . . . . . . . . . 11 (𝑥 = suc 𝑧 → ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃))
3736oveq2d 5528 . . . . . . . . . 10 (𝑥 = suc 𝑧 → (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)))
3837eleq1d 2106 . . . . . . . . 9 (𝑥 = suc 𝑧 → ((𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
3938anbi2d 437 . . . . . . . 8 (𝑥 = suc 𝑧 → (((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
4039rexbidv 2327 . . . . . . 7 (𝑥 = suc 𝑧 → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
4140imbi1d 220 . . . . . 6 (𝑥 = suc 𝑧 → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) ↔ (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
42 2onn 6094 . . . . . . . . . . . . . . . . 17 2𝑜 ∈ ω
43 nnacl 6059 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ω ∧ 2𝑜 ∈ ω) → (𝑦 +𝑜 2𝑜) ∈ ω)
44 nna0 6053 . . . . . . . . . . . . . . . . . 18 ((𝑦 +𝑜 2𝑜) ∈ ω → ((𝑦 +𝑜 2𝑜) +𝑜 ∅) = (𝑦 +𝑜 2𝑜))
4543, 44syl 14 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ω ∧ 2𝑜 ∈ ω) → ((𝑦 +𝑜 2𝑜) +𝑜 ∅) = (𝑦 +𝑜 2𝑜))
4642, 45mpan2 401 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ω → ((𝑦 +𝑜 2𝑜) +𝑜 ∅) = (𝑦 +𝑜 2𝑜))
4746opeq1d 3555 . . . . . . . . . . . . . . 15 (𝑦 ∈ ω → ⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩ = ⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩)
4847eceq1d 6142 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → [⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q = [⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q )
4948oveq1d 5527 . . . . . . . . . . . . 13 (𝑦 ∈ ω → ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃) = ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃))
5049oveq2d 5528 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)))
5150eleq1d 2106 . . . . . . . . . . 11 (𝑦 ∈ ω → ((𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
5251anbi2d 437 . . . . . . . . . 10 (𝑦 ∈ ω → (((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
5352rexbiia 2339 . . . . . . . . 9 (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
54 opeq1 3549 . . . . . . . . . . . . . . 15 (𝑦 = 𝑗 → ⟨𝑦, 1𝑜⟩ = ⟨𝑗, 1𝑜⟩)
5554eceq1d 6142 . . . . . . . . . . . . . 14 (𝑦 = 𝑗 → [⟨𝑦, 1𝑜⟩] ~Q0 = [⟨𝑗, 1𝑜⟩] ~Q0 )
5655oveq1d 5527 . . . . . . . . . . . . 13 (𝑦 = 𝑗 → ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃) = ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃))
5756oveq2d 5528 . . . . . . . . . . . 12 (𝑦 = 𝑗 → (𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) = (𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)))
5857eleq1d 2106 . . . . . . . . . . 11 (𝑦 = 𝑗 → ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ↔ (𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿))
59 oveq1 5519 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑗 → (𝑦 +𝑜 2𝑜) = (𝑗 +𝑜 2𝑜))
6059opeq1d 3555 . . . . . . . . . . . . . . 15 (𝑦 = 𝑗 → ⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩ = ⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩)
6160eceq1d 6142 . . . . . . . . . . . . . 14 (𝑦 = 𝑗 → [⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q = [⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q )
6261oveq1d 5527 . . . . . . . . . . . . 13 (𝑦 = 𝑗 → ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃) = ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃))
6362oveq2d 5528 . . . . . . . . . . . 12 (𝑦 = 𝑗 → (𝐴 +Q ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)))
6463eleq1d 2106 . . . . . . . . . . 11 (𝑦 = 𝑗 → ((𝐴 +Q ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
6558, 64anbi12d 442 . . . . . . . . . 10 (𝑦 = 𝑗 → (((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
6665cbvrexv 2534 . . . . . . . . 9 (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
6753, 66bitri 173 . . . . . . . 8 (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
6867biimpi 113 . . . . . . 7 (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
6968a1i 9 . . . . . 6 ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
70 prarloclem3step 6594 . . . . . . . . 9 (((𝑧 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
7170ex 108 . . . . . . . 8 ((𝑧 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
7271imim1d 69 . . . . . . 7 ((𝑧 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
7372ex 108 . . . . . 6 (𝑧 ∈ ω → ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))))
7423, 32, 41, 69, 73finds2 4324 . . . . 5 (𝑥 ∈ ω → ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
7514, 74vtoclga 2619 . . . 4 (𝑋 ∈ ω → ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
7675imp 115 . . 3 ((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
771, 2, 3, 4, 76syl13anc 1137 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
78773impia 1101 1 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  w3a 885   = wceq 1243  wcel 1393  wrex 2307  c0 3224  cop 3378  suc csuc 4102  ωcom 4313  (class class class)co 5512  1𝑜c1o 5994  2𝑜c2o 5995   +𝑜 coa 5998  [cec 6104   ~Q ceq 6377  Qcnq 6378   +Q cplq 6380   ·Q cmq 6381   ~Q0 ceq0 6384   +Q0 cplq0 6387   ·Q0 cmq0 6388  Pcnp 6389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-plq0 6525  df-mq0 6526  df-inp 6564
This theorem is referenced by:  prarloclem4  6596
  Copyright terms: Public domain W3C validator