![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mto | Unicode version |
Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mto.1 |
![]() ![]() ![]() |
mto.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mto |
![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mto.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mto.1 |
. . 3
![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | pm2.65i 568 |
1
![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-in1 544 ax-in2 545 |
This theorem is referenced by: mtbi 595 pm3.2ni 726 pm5.16 737 intnan 838 intnanr 839 equidqe 1425 nexr 1582 ru 2763 sspssn 3048 neldifsn 3497 nvel 3889 nlim0 4131 snnex 4181 onprc 4276 dtruex 4283 ordsoexmid 4286 nprrel 4386 0xp 4420 iprc 4600 son2lpi 4721 nfunv 4933 0fv 5208 acexmidlema 5503 acexmidlemb 5504 acexmidlemab 5506 mpt20 5574 php5dom 6325 0nnq 6462 0npr 6581 1ne0sr 6851 pnfnre 7067 mnfnre 7068 ine0 7391 inelr 7575 1nuz2 8543 0nrp 8616 bj-nvel 10017 |
Copyright terms: Public domain | W3C validator |