ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0fv Unicode version

Theorem 0fv 5208
Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.)
Assertion
Ref Expression
0fv  |-  ( (/) `  A )  =  (/)

Proof of Theorem 0fv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-fv 4910 . 2  |-  ( (/) `  A )  =  ( iota x A (/) x )
2 noel 3228 . . . . . 6  |-  -.  <. A ,  x >.  e.  (/)
3 df-br 3765 . . . . . 6  |-  ( A
(/) x  <->  <. A ,  x >.  e.  (/) )
42, 3mtbir 596 . . . . 5  |-  -.  A (/) x
54nex 1389 . . . 4  |-  -.  E. x  A (/) x
6 euex 1930 . . . 4  |-  ( E! x  A (/) x  ->  E. x  A (/) x )
75, 6mto 588 . . 3  |-  -.  E! x  A (/) x
8 iotanul 4882 . . 3  |-  ( -.  E! x  A (/) x  ->  ( iota x A (/) x )  =  (/) )
97, 8ax-mp 7 . 2  |-  ( iota
x A (/) x )  =  (/)
101, 9eqtri 2060 1  |-  ( (/) `  A )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1243   E.wex 1381    e. wcel 1393   E!weu 1900   (/)c0 3224   <.cop 3378   class class class wbr 3764   iotacio 4865   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-in 2924  df-ss 2931  df-nul 3225  df-sn 3381  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator